56 research outputs found

    Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'

    Get PDF
    We combined large-scale mRNA expression analysis and gene mapping to identify genes and loci that control hematopoietic stem cell (HSC) function. We measured mRNA expression levels in purified HSCs isolated from a panel of densely genotyped recombinant inbred mouse strains. We mapped quantitative trait loci (QTLs) associated with variation in expression of thousands of transcripts. By comparing the physical transcript position with the location of the controlling QTL, we identified polymorphic cis-acting stem cell genes. We also identified multiple trans-acting control loci that modify expression of large numbers of genes. These groups of coregulated transcripts identify pathways that specify variation in stem cells. We illustrate this concept with the identification of candidate genes involved with HSC turnover. We compared expression QTLs in HSCs and brain from the same mice and identified both shared and tissue-specific QTLs. Our data are accessible through WebQTL, a web-based interface that allows custom genetic linkage analysis and identification of coregulated transcripts.

    Injection of Human Bone Marrow and Mononuclear Cell Extract into Infarcted Mouse Hearts Results in Functional Improvement

    Get PDF
    Background: We have previously shown that mouse whole bone marrow cell (BMC) extract results in improvement of cardiac function and decreases scar size in a mouse model of myocardial infarction (MI), in the absence of intact cells. It is not clear if thes

    Mechanisms of blood homeostasis: lineage tracking and a neutral model of cell populations in rhesus macaques

    Get PDF
    BACKGROUND: How a potentially diverse population of hematopoietic stem cells (HSCs) differentiates and proliferates to supply more than 10(11) mature blood cells every day in humans remains a key biological question. We investigated this process by quantitatively analyzing the clonal structure of peripheral blood that is generated by a population of transplanted lentivirus-marked HSCs in myeloablated rhesus macaques. Each transplanted HSC generates a clonal lineage of cells in the peripheral blood that is then detected and quantified through deep sequencing of the viral vector integration sites (VIS) common within each lineage. This approach allowed us to observe, over a period of 4-12 years, hundreds of distinct clonal lineages. RESULTS: While the distinct clone sizes varied by three orders of magnitude, we found that collectively, they form a steady-state clone size-distribution with a distinctive shape. Steady-state solutions of our model show that the predicted clone size-distribution is sensitive to only two combinations of parameters. By fitting the measured clone size-distributions to our mechanistic model, we estimate both the effective HSC differentiation rate and the number of active HSCs. CONCLUSIONS: Our concise mathematical model shows how slow HSC differentiation followed by fast progenitor growth can be responsible for the observed broad clone size-distribution. Although all cells are assumed to be statistically identical, analogous to a neutral theory for the different clone lineages, our mathematical approach captures the intrinsic variability in the times to HSC differentiation after transplantation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-015-0191-8) contains supplementary material, which is available to authorized users

    Combining transcriptional profiling and genetic linkage analysis to uncover gene networks operating in hematopoietic stem cells and their progeny

    Get PDF
    Stem cells are unique in that they possess both the capacity to self-renew and thereby maintain their original pool as well as the capacity to differentiate into mature cells. In the past number of years, transcriptional profiling of enriched stem cell populations has been extensively performed in an attempt to identify a universal stem cell gene expression signature. While stem-cell-specific transcripts were identified in each case, this approach has thus far been insufficient to identify a universal group of core “stemness” genes ultimately responsible for self-renewal and multipotency. Similarly, in the hematopoietic system, comparisons of transcriptional profiles between different hematopoietic cell stages have had limited success in revealing core genes ultimately responsible for the initiation of differentiation and lineage specification. Here, we propose that the combined use of transcriptional profiling and genetic linkage analysis, an approach called “genetical genomics”, can be a valuable tool to assist in the identification of genes and gene networks that specify “stemness” and cell fate decisions. We review past studies of hematopoietic cells that utilized transcriptional profiling and/or genetic linkage analysis, and discuss several potential future applications of genetical genomics

    A self-renewal assay for cancer stem cells

    Full text link
    Cancers of epithelial origin are responsible for the majority of cancer-related deaths in the USA. Unfortunately, although chemotherapy and/or radiation therapy can sometimes shrink tumors, metastatic cancers of epithelial origin are essentially incurable. It is clear that new approaches are needed to treat these diseases. Although cancer cell lines provide invaluable information, their biological properties often differ in crucial ways from de novo cancer cells. Our laboratory has developed a novel mouse model that reliably permits individual cancer cells isolated directly from patients’ tumors to be assayed. This will allow the characterization of crucial signaling pathways involved in processes such as self-renewal that are critical for tumor formation by the cancer cells within de novo tumors. These tools should lead to new insights into the cellular and molecular mechanisms that drive human breast cancer growth and invasion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46932/1/280_2005_Article_97.pd

    Further phenotypic characterization of the primitive lineage− CD34+CD38−CD90+CD45RA− hematopoietic stem cell/progenitor cell sub-population isolated from cord blood, mobilized peripheral blood and patients with chronic myelogenous leukemia

    Get PDF
    The most primitive hematopoietic stem cell (HSC)/progenitor cell (PC) population reported to date is characterized as being Lin−CD34+CD38−CD90+CD45R. We have a long-standing interest in comparing the characteristics of hematopoietic progenitor cell populations enriched from normal subjects and patients with chronic myelogenous leukemia (CML). In order to investigate further purification of HSCs and for potential targetable differences between the very primitive normal and CML stem/PCs, we have phenotypically compared the normal and CML Lin−CD34+CD38−CD90+CD45RA− HSC/PC populations. The additional antigens analyzed were HLA-DR, the receptor tyrosine kinases c-kit and Tie2, the interleukin-3 cytokine receptor, CD33 and the activation antigen CD69, the latter of which was recently reported to be selectively elevated in cell lines expressing the Bcr-Abl tyrosine kinase. Notably, we found a strikingly low percentage of cells from the HSC/PC sub-population isolated from CML patients that were found to express the c-kit receptor (<1%) compared with the percentages of HSC/PCs expressing the c-kitR isolated from umbilical cord blood (50%) and mobilized peripheral blood (10%). Surprisingly, Tie2 receptor expression within the HSC/PC subset was extremely low from both normal and CML samples. Using in vivo transplantation studies, we provide evidence that HLA-DR, c-kitR, Tie2 and IL-3R may not be suitable markers for further partitioning of HSCs from the Lin−CD34+CD38−CD90+CD45RA− sub-population

    Tissue resident stem cells: till death do us part

    Get PDF
    corecore