16 research outputs found

    Evaluation of Oxfendazole, Praziquantel and Albendazole against Cystic Echinococcosis: A Randomized Clinical Trial in Naturally Infected Sheep

    Get PDF
    Cystic Echinococcosis (CE) is a near-cosmopolitan parasitic zoonosis that causes economic losses in many regions of the world. This parasitic infection can be regarded as an emerging or re-emerging disease causing considerable losses in livestock production. CE is produced by the larval cystic stage (hydatid) of the dog parasite Echinococcus granulosus. After infective eggs are ingested, cysts develop mainly in lungs and liver of humans and animals (sheep, cattle, pigs, horses, etc). Infected people may require surgery and/or Albendazole-based chemotherapy. In this study, we evaluated the effects of Oxfendazole alone (an antiparasitic drug used in animals), Oxfendazole plus Praziquantel, and Albendazole plus Praziquantel against hydatid cysts in sheep over 4 to 6 weeks of treatment. All of the treatments in this study were efficacious in killing the larval stages and, therefore, in minimizing the risk of a dog acquiring new infections (taenias). These treatment schemes can be added to control measures in animals and eventually could be used for the treatment of human infection. Further investigations on different schedules of monotherapy or combined chemotherapy are needed, as well as studies to evaluate the safety and efficacy of Oxfendazole in humans

    Unexpected removal of the most neutral cationic pharmaceutical in river waters

    Get PDF
    Contamination of surface waters by pharmaceuticals is now widespread. There are few data on their environmental behaviour, particularly for those which are cationic at typical surface water pH. As the external surfaces of bacterio-plankton cells are hydrophilic with a net negative charge, it was anticipated that bacterio-plankton in surface-waters would preferentially remove the most extensively-ionised cation at a given pH. To test this hypothesis, the persistence of four, widely-used, cationic pharmaceuticals, chloroquine, quinine, fluphenazine and levamisole, was assessed in batch microcosms, comprising water and bacterio-plankton, to which pharmaceuticals were added and incubated for 21 days. Results show that levamisole concentrations decreased by 19 % in microcosms containing bacterio-plankton, and by 13 % in a parallel microcosm containing tripeptide as a priming agent. In contrast to levamisole, concentrations of quinine, chloroquine and fluphenazine were unchanged over 21 days in microcosms containing bacterio-plankton. At the river-water pH, levamisole is 28 % cationic, while quinine is 91–98 % cationic, chloroquine 99 % cationic and fluphenazine 72–86 % cationic. Thus, the most neutral compound, levamisole, showed greatest removal, contradicting the expected bacterio-plankton preference for ionised molecules. However, levamisole was the most hydrophilic molecule, based on its octanol–water solubility coefficient (K ow). Overall, the pattern of pharmaceutical behaviour within the incubations did not reflect the relative hydrophilicity of the pharmaceuticals predicted by the octanol–water distribution coefficient, D ow, suggesting that improved predictive power, with respect to modelling bioaccumulation, may be needed to develop robust environmental risk assessments for cationic pharmaceuticals
    corecore