7,784 research outputs found
Allergic fetal priming leads to developmental, behavioral and neurobiological changes in mice.
The state of the mother's immune system during pregnancy has an important role in fetal development and disruptions in the balance of this system are associated with a range of neurologic, neuropsychiatric and neurodevelopmental disorders. Epidemiological and clinical reports reveal various clues that suggest a possible association between developmental neuropsychiatric disorders and family history of immune system dysfunction. Over the past three decades, analogous increases have been reported in both the incidence of neurodevelopmental disorders and immune-related disorders, particularly allergy and asthma, raising the question of whether allergic asthma and characteristics of various neurodevelopmental disorders share common causal links. We used a mouse model of maternal allergic asthma to test this novel hypothesis that early fetal priming with an allergenic exposure during gestation produces behavioral deficits in offspring. Mothers were primed with an exposure to ovalbumin (OVA) before pregnancy, then exposed to either aerosolized OVA or vehicle during gestation. Both male and female mice born to mothers exposed to aerosolized OVA during gestation exhibited altered developmental trajectories in weight and length, decreased sociability and increased marble-burying behavior. Moreover, offspring of OVA-exposed mothers were observed to have increased serotonin transporter protein levels in the cortex. These data demonstrate that behavioral and neurobiological effects can be elicited following early fetal priming with maternal allergic asthma and provide support that maternal allergic asthma may, in some cases, be a contributing factor to neurodevelopmental disorders
Interaction-aware Kalman Neural Networks for Trajectory Prediction
Forecasting the motion of surrounding obstacles (vehicles, bicycles,
pedestrians and etc.) benefits the on-road motion planning for intelligent and
autonomous vehicles. Complex scenes always yield great challenges in modeling
the patterns of surrounding traffic. For example, one main challenge comes from
the intractable interaction effects in a complex traffic system. In this paper,
we propose a multi-layer architecture Interaction-aware Kalman Neural Networks
(IaKNN) which involves an interaction layer for resolving high-dimensional
traffic environmental observations as interaction-aware accelerations, a motion
layer for transforming the accelerations to interaction aware trajectories, and
a filter layer for estimating future trajectories with a Kalman filter network.
Attributed to the multiple traffic data sources, our end-to-end trainable
approach technically fuses dynamic and interaction-aware trajectories boosting
the prediction performance. Experiments on the NGSIM dataset demonstrate that
IaKNN outperforms the state-of-the-art methods in terms of effectiveness for
traffic trajectory prediction.Comment: 8 pages, 4 figures, Accepted for IEEE Intelligent Vehicles Symposium
(IV) 202
Measuring vertebrate telomeres: applications and limitations
Telomeres are short tandem repeated sequences of DNA found at the ends of eukaryotic
chromosomes that function in stabilizing chromosomal end integrity.
In vivo
studies of
somatic tissue of mammals and birds have shown a correlation between telomere length and
organismal age within species, and correlations between telomere shortening rate and
lifespan among species. This result presents the tantalizing possibility that telomere length
could be used to provide much needed information on age, ageing and survival in natural
populations where longitudinal studies are lacking. Here we review methods available for
measuring telomere length and discuss the potential uses and limitations of telomeres as
age and ageing estimators in the fields of vertebrate ecology, evolution and conservation
Deciphering interplay between Salmonella invasion effectors
Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cis binary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction
Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule
N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system
Glucosylsphingosine Is a Highly Sensitive and Specific Biomarker for Primary Diagnostic and Follow-Up Monitoring in Gaucher Disease in a Non-Jewish, Caucasian Cohort of Gaucher Disease Patients
Gaucher disease (GD) is the most common lysosomal storage disorder (LSD). Based on a deficient β-glucocerebrosidase it leads to an accumulation of glucosylceramide. Standard diagnostic procedures include measurement of enzyme activity, genetic testing as well as analysis of chitotriosidase and CCL18/PARC as biomarkers. Even though chitotriosidase is the most well-established biomarker in GD, it is not specific for GD. Furthermore, it may be false negative in a significant percentage of GD patients due to mutation. Additionally, chitotriosidase reflects the changes in the course of the disease belatedly. This further enhances the need for a reliable biomarker, especially for the monitoring of the disease and the impact of potential treatments.Here, we evaluated the sensitivity and specificity of the previously reported biomarker Glucosylsphingosine with regard to different control groups (healthy control vs. GD carriers vs. other LSDs).Only GD patients displayed elevated levels of Glucosylsphingosine higher than 12 ng/ml whereas the comparison controls groups revealed concentrations below the pathological cut-off, verifying the specificity of Glucosylsphingosine as a biomarker for GD. In addition, we evaluated the biomarker before and during enzyme replacement therapy (ERT) in 19 patients, demonstrating a decrease in Glucosylsphingosine over time with the most pronounced reduction within the first 6 months of ERT. Furthermore, our data reveals a correlation between the medical consequence of specific mutations and Glucosylsphingosine.In summary, Glucosylsphingosine is a very promising, reliable and specific biomarker for GD
Hierarchies of Susy Splittings and Invisible Photinos as Dark Matter
We explore how to generate hierarchies in the splittings between
superpartners. Some of the consequences are the existence of invisible
components of dark matter, new inflaton candidates, invisible monopoles and a
number of invisible particles that might dominate during various eras, in
particular between BBN and recombination and decay subsequently.Comment: 16 pages. v3: Ref. 27 has been modified. v4: Published versio
Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains
This work was supported by grants from Cancer Research UK (C434/A13067), the Wellcome Trust (098391/Z/12/Z) and Biotechnology and Biological Sciences Research Council (BB/J016004/1).The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis.PostprintPeer reviewe
The Minimal Scale Invariant Extension of the Standard Model
We perform a systematic analysis of an extension of the Standard Model that
includes a complex singlet scalar field and is scale invariant at the tree
level. We call such a model the Minimal Scale Invariant extension of the
Standard Model (MSISM). The tree-level scale invariance of the model is
explicitly broken by quantum corrections, which can trigger electroweak
symmetry breaking and potentially provide a mechanism for solving the gauge
hierarchy problem. Even though the scale invariant Standard Model is not a
realistic scenario, the addition of a complex singlet scalar field may result
in a perturbative and phenomenologically viable theory. We present a complete
classification of the flat directions which may occur in the classical scalar
potential of the MSISM. After calculating the one-loop effective potential of
the MSISM, we investigate a number of representative scenarios and determine
their scalar boson mass spectra, as well as their perturbatively allowed
parameter space compatible with electroweak precision data. We discuss the
phenomenological implications of these scenarios, in particular, whether they
realize explicit or spontaneous CP violation, neutrino masses or provide dark
matter candidates. In particular, we find a new minimal scale-invariant model
of maximal spontaneous CP violation which can stay perturbative up to
Planck-mass energy scales, without introducing an unnaturally large hierarchy
in the scalar-potential couplings.Comment: 71 pages, 34 eps figures, numerical error corrected, clarifying
comments adde
- …
