39 research outputs found

    Behavioural and Physiological Responses of Gammarus pulex Exposed to Cadmium and Arsenate at Three Temperatures: Individual and Combined Effects

    Get PDF
    This study aimed at investigating both the individual and combined effects of cadmium (Cd) and arsenate (AsV) on the physiology and behaviour of the Crustacean Gammarus pulex at three temperatures (5, 10 and15°C). G. pulex was exposed during 96 h to (i) two [Cd] alone, (ii) two [AsV] alone, and (iii) four combinations of [Cd] and [AsV] to obtain a complete factorial plane. After exposure, survival, [AsV] or [Cd] in body tissues, behavioural (ventilatory and locomotor activities) and physiological responses (iono-regulation of [Na+] and [Cl−] in haemolymph) were examined. The interactive effects (antagonistic, additive or synergistic) of binary mixtures were evaluated for each tested temperature using a predictive model for the theoretically expected interactive effect of chemicals. In single metal exposure, both the internal metal concentration in body tissues and the mortality rate increased along metallic gradient concentration. Cd alone significantly impaired both [Na+] and [Cl−] while AsV alone had a weak impact only on [Cl−]. The behavioural responses of G. pulex declined with increasing metal concentration suggesting a reallocation of energy from behavioural responses to maintenance functions. The interaction between AsV and Cd was considered as ‘additive’ for all the tested binary mixtures and temperatures (except for the lowest combination at 10°C considered as “antagonistic”). In binary mixtures, the decrease in both ventilatory and locomotor activities and the decline in haemolymphatic [Cl−] were amplified when respectively compared to those observed with the same concentrations of AsV or Cd alone. However, the presence of AsV decreased the haemolymphatic [Na+] loss when G. pulex was exposed to the lowest Cd concentration. Finally, the observed physiological and behavioural effects (except ventilation) in G. pulex exposed to AsV and/or Cd were exacerbated under the highest temperature. The discussion encompasses both the toxicity mechanisms of these metals and their interaction with rising temperature

    Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function

    Get PDF
    Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant “downhill” pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the “new view” of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design

    Control of carotenoid gene expression in Bixa orellana L. leaves treated with norflurazon

    No full text
    Bixa orellana (annatto or lipstick tree) is a perennial tropical plant that stores and produces considerable quantities of the apocarotenoid bixin, a culturally and economically important pigment used worldwide. However, the mechanisms underlying the gene regulation and pigment accumulation of bixin and carotenoids in annatto remain unknown. Bixin is present in the different tissues of the plant, although this pigment is primarily accumulated in the seed coat. Thus, the leaves are useful organs for understanding carotenoid and bixin production, thereby facilitating the study of this pigment, which would otherwise be difficult in ligneous adult plants. To study the regulation of bixin synthesis and to determine which genes are important regulatory molecules at the transcription level, the herbicide norflurazon (NF) was used to block carotenoid synthesis and bixin concentrations in B. orellana leaves. The genes activated in the early stages of the carotenoid pathway are involved in lycopene production (dxs, psy and pds), and those induced in the later stages of the carotenoid pathway, such as β and ε-lycopene cyclases and boccd1, were differentially expressed compared with the control. The expression of some genes was more susceptible to certain concentrations of NF, potentially reflecting the roles of these genes in carotenoid synthesis in B. orellana. These results suggest that apocarotenoids, such as bixin, are synthesized using alternative precursors through the actions of genes that have not yet been identified
    corecore