77 research outputs found

    New approaches to high-resolution mapping of marine vertical structures

    Get PDF
    Vertical walls in marine environments can harbour high biodiversity and provide natural protection from bottom-trawling activities. However, traditional mapping techniques are usually restricted to down-looking approaches which cannot adequately replicate their 3D structure. We combined sideways-looking multibeam echosounder (MBES) data from an AUV, forward-looking MBES data from ROVs and ROV-acquired videos to examine walls from Rockall Bank and Whittard Canyon, Northeast Atlantic. High-resolution 3D point clouds were extracted from each sonar dataset and structure from motion photogrammetry (SfM) was applied to recreate 3D representations of video transects along the walls. With these reconstructions, it was possible to interact with extensive sections of video footage and precisely position individuals. Terrain variables were derived on scales comparable to those experienced by megabenthic individuals. These were used to show differences in environmental conditions between observed and background locations as well as explain spatial patterns in ecological characteristics. In addition, since the SfM 3D reconstructions retained colours, they were employed to separate and quantify live coral colonies versus dead framework. The combination of these new technologies allows us, for the first time, to map the physical 3D structure of previously inaccessible habitats and demonstrates the complexity and importance of vertical structures

    Loss of coral reef growth capacity to track future increases in sea level

    Get PDF
    Water-depths above coral reefs is predicted to increase due to global sea-level rise (SLR). As ecological degradation inhibits the vertical accretion of coral reefs, it is likely that coastal wave exposure will increase but there currently exists a lack of data in projections concerning local rates of reef growth and local SLR. In this study we have aggregated ecological data of more than 200 tropical western Atlantic and Indian Ocean reefs and calculated their vertical growth which we have then compared with recent and projected rates of SLR across different Representative Concentration Pathway (RCP) scenarios. While many reefs currently show vertical growth that would be sufficient to keep-up with recent historic SLR, future projections under scenario RCP4.5 reveal that without substantial ecological recovery many reefs will not have the capacity to track SLR. Under RCP8.5, we predict that mean water depth will increase by over half a metre by 2100 across the majority of reefs. We found that coral cover strongly predicted whether a reef could track SLR, but that the majority of reefs had coral cover significantly lower than that required to prevent reef submergence. To limit reef submergence, and thus the impacts of waves and storms on adjacent coasts, climate mitigation and local impacts that reduce coral cover (e.g., local pollution and physical damage through development land reclamation) will be necessary

    A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications

    Full text link

    Optimizing Infragravity Wave Attenuation to Improve Coral Reef Restoration Design for Coastal Defense

    No full text
    Coral reefs are effective natural flood barriers that protect adjacent coastal communities. As the need to adapt to rising sea levels, storms, and environmental changes increases, reef restoration may be one of the best tools available to mitigate coastal flooding along tropical coastlines, now and in the future. Reefs act as a barrier to incoming short-wave energy but can amplify low-frequency infragravity waves that, in turn, drive coastal flooding along low-lying tropical coastlines. Here, we investigate whether the spacing of reef restoration elements can be optimized to maximize infragravity wave energy dissipation while minimizing the number of elements—a key factor in the cost of a restoration project. With this goal, we model the hydrodynamics of infragravity wave dissipation over a coral restoration or artificial reef, represented by a canopy of idealized hemispherical roughness elements, using a three-dimensional Navier–Stokes equations solver (OpenFOAM). The results demonstrate that denser canopies of restoration elements produce greater wave dissipation under larger waves with longer periods. Wave dissipation is also frequency-dependent: dense canopies remove wave energy at the predominant wave frequency, whereas sparse canopies remove energy at higher frequencies, and hence are less efficient. We also identify an inflection point in the canopy density–energy dissipation curve that balances optimal energy losses with a minimum number of canopy elements. Through this work, we show that there are an ideal number of restoration elements per across-shore meter of coral reef flat that can be installed to dissipate infragravity wave energy for given incident heights and periods. These results have implications for designing coral reef restoration projects on reef flats that are effective both from a coastal defense and costing standpoint

    The Contribution of Currents, Sea-Swell Waves, and Infragravity Waves to Suspended-Sediment Transport Across a Coral Reef-Lagoon System

    No full text
    Abstract Coral reefs generate substantial volumes of carbonate sediment, which is redistributed throughout the reef‐lagoon system. However, there is little understanding of the specific processes that transport this sediment produced on the outer portions of coral reefs throughout a reef‐lagoon system. Furthermore, the separate contributions of currents, sea‐swell waves, and infragravity waves to transport, which are all strongly influenced by the presence of a reef, is not fully understood. Here, we show that in reef‐lagoon systems most suspended sediment is transported close to the seabed and can, at times, be suspended higher in the water column during oscillatory flow transitions (i.e., near slack flow) at sea‐swell wave frequencies, and during the peak onshore oscillatory velocity phase at infragravity wave frequencies. While these wave frequencies contribute to the transport of suspended sediment offshore and onshore, respectively, the net flux is small. Mean currents are the primary transport mechanism and responsible for almost 2 orders of magnitude more suspended‐sediment flux than sea‐swell and infragravity waves. Whilst waves may not be the primary mechanism for the transport of sediment, our results suggest they are an important driver of sediment suspension from the seabed, as well as contributing to the partitioning of sediment grain sizes from the reef to the shoreline. As the ocean wave climate changes, sea level rises, and the composition of reef benthic communities change, the relative importance of mean currents, sea‐swell waves, and infragravity waves is likely to change, and this will affect how sediment is redistributed throughout reef‐lagoon systems

    Spectral Wave-Driven Bedload Transport Across a Coral Reef Flat/Lagoon Complex

    Get PDF
    Coral reefs are an important source of sediment for reef-lined coasts and help to maintain beaches by providing protection though dissipation of wave energy. Understanding the mechanisms that deliver sediment to the coast from coral reefs and quantifying the total volume of sediment generated at coral reefs are critical for projecting future coastal change. A month-long hydrodynamics and sediment transport study on a fringing reef/lagoon complex in Western Australia indicates that lower frequency wave energy constituents are important to the total bedload transport of sediment across the reef flat and lagoon to the shoreline. The reef flat and the lagoon are characterized by distinctly different transport regimes, resulting in an offset in the timing of bedform migration between the two. Short-term storage of sediment occurs on the reef flat, which is subsequently transported into the lagoon when offshore wave heights increase and strong currents due to wave breaking at the reef crest develop. This sudden influx of sediment is correlated with an increase in bedform migration rates in the lagoon. Infragravity wave energy on the reef flat and lagoon make an important contribution to the migration of bedforms and resultant bedload transport. Given the complexity of the hydrodynamics of fringing reefs, the transfer of energy to lower frequency bands, as well as accurate estimates of sources and sinks of sediment, must but considered in order to correctly model the transport of sediment from the reef to the coast

    Differential Impact of Monsoon and Large Amplitude Internal Waves on Coral Reef Development in the Andaman Sea

    Get PDF
    The Andaman Sea and other macrotidal semi-enclosed tropical seas feature large amplitude internal waves (LAIW). Although LAIW induce strong fluctuations i.e. of temperature, pH, and nutrients, their influence on reef development is so far unknown. A better-known source of disturbance is the monsoon affecting corals due to turbulent mixing and sedimentation. Because in the Andaman Sea both, LAIW and monsoon, act from the same westerly direction their relative contribution to reef development is difficult to discern. Here, we explore the framework development in a number of offshore island locations subjected to differential LAIW- and SW-monsoon impact to address this open question. Cumulative negative temperature anomalies – a proxy for LAIW impact – explained a higher percentage of the variability in coral reef framework height, than sedimentation rates which resulted mainly from the monsoon. Temperature anomalies and sediment grain size provided the best correlation with framework height suggesting that so far neglected subsurface processes (LAIW) play a significant role in shaping coral reefs
    corecore