402 research outputs found
Use of stochastic simulation to evaluate the reduction in methane emissions and improvement in reproductive efficiency from routine hormonal interventions in dairy herds
This study predicts the magnitude and between herd variation in changes of methane emissions and production efficiency associated with interventions to improve reproductive efficiency in dairy cows. Data for 10,000 herds of 200 cows were simulated. Probability of conception was predicted daily from the start of the study (parturition) for each cow up to day 300 of lactation. Four scenarios of differing first insemination management were simulated for each herd using the same theoretical cows: A baseline scenario based on breeding from observed oestrus only, synchronisation of oestrus for pre-set first insemination using 2 methods, and a regime using prostaglandin treatments followed by first insemination to observed oestrus. Cows that did not conceive to first insemination were re-inseminated following detection of oestrus. For cows that conceived, gestation length was 280 days with cessation of milking 60 days before calving. Those cows not pregnant after 300 days of lactation were culled and replaced by a heifer. Daily milk yield was calculated for 730 days from the start of the study for each cow. Change in mean reproductive and economic outputs were summarised for each herd following the 3 interventions. For each scenario, methane emissions were determined by daily forage dry matter intake, forage quality, and cow replacement risk. Linear regression was used to summarise relationships. In some circumstances improvement in reproductive efficiency using the programmes investigated was associated with reduced cost and methane emissions compared to reliance on detection of oestrus. Efficiency of oestrus detection and the time to commencement of breeding after calving influenced variability in changes in cost and methane emissions. For an average UK herd this was a saving of at least £50 per cow and a 3.6% reduction in methane emissions per L of milk when timing of first insemination was pre-set
Are men’s perceptions of sexually dimorphic vocal characteristics related to their testosterone levels?
Feminine physical characteristics in women are positively correlated with markers of their mate quality. Previous research on men’s judgments of women’s facial attractiveness suggests that men show stronger preferences for feminine characteristics in women’s faces when their own testosterone levels are relatively high. Such results could reflect stronger preferences for high quality mates when mating motivation is strong and/or following success in male-male competition. Given these findings, the current study investigated whether a similar effect of testosterone occurs for men’s preferences for feminine characteristics in women’s voices. Men’s preferences for feminized versus masculinized versions of women’s and men’s voices were assessed in five weekly test sessions and saliva samples were collected in each test session. Analyses showed no relationship between men’s voice preferences and their testosterone levels. Men’s tendency to perceive masculinized men’s and women’s voices as more dominant was also unrelated to their testosterone levels. Together, the results of the current study suggest that testosterone-linked changes in responses to sexually dimorphic characteristics previously reported for men's perceptions of faces do not occur for men's perceptions of voices
A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients
Pollination and biological control research: are we neglecting two billion smallholders
Food insecurity is a major world problem, with ca. 870 million people in the world being chronically undernourished. Most of these people live in tropical, developing regions and rely on smallholder farming for food security. Solving the problem of food insecurity is thought to depend, in part, on managing ecosystem services, such as the pollination of crops and the biological control of crop pests, to enhance or maintain food production. Our knowledge regarding regulating ecosystem services in smallholder-farmed (or dualistic) landscapes is limited and whilst pollination has been the focus of considerable research, the provision of natural enemy services, important for every crop worldwide, has been relatively neglected. In order to assess whether ecosystem-service research adequately represents smallholder-farmed landscapes, whilst also considering climatic region and national economic status, we examined the constituent studies of recent quantitative reviews relevant to biological control and pollination. No regulating ecosystem service meta-analysis, to our knowledge, has focussed on smallholder agriculture despite its importance to billions of peoples’ local food security. We found that whilst smallholdings contributed 16% of global farmland area and 83% of the global agricultural population (estimated using FAO’s World Census of Agriculture 2000) only 22 of 190 studies (12%), overall, came from smallholder-farmed landscapes. These smallholder studies mostly concerned coffee production (16 studies). Individual reviews of biological control were significantly and strongly biased towards data from large-scale farming in temperate regions. In contrast pollination reviews included more smallholder studies and were more balanced for climate regions. The high diversity of smallholder-farmed landscapes implies that more research will be needed to understand them compared to large-scale landscapes but we found far more research from the latter. We highlight that these skews in research effort have implications for sustainable intensification and the food security of billions in the developing world. In particular we urge for balance in future ecosystem-services research and synthesis by greater consideration of a diverse range of smallholder-farmed landscapes in Africa and continental Asia
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
Collaborative care for depression and anxiety problems
This review is published as a Cochrane Review in the Cochrane Database of Systematic Reviews 2012, Issue 10. Cochrane Reviews are regularly updated as new evidence emerges and in response to comments and criticisms, and the Cochrane Database of Systematic Reviews should be consulted for the most recent version of the Review.Common mental health problems, such as depression and anxiety, are estimated to affect up to 15% of the UK population at any one time, and health care systems worldwide need to implement interventions to reduce the impact and burden of these conditions. Collaborative care is a complex intervention based on chronic disease management models that may be effective in the management of these common mental health problems
Short-Lived Trace Gases in the Surface Ocean and the Atmosphere
The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science
A comparative study of quality and safety of Atlantic cod (Gadus morhua) fillets during cold storage, as affected by different thawing methods of pre-rigor frozen headed and gutted fish
The catch of marine whitefish is typically seasonal, whereas the land‐based processing industry has a need for all‐year stable supply of raw materials. This challenge can be met by applying fish frozen at sea. When using frozen fish, the methods employed for thawing may influence the safety and quality of the final product. This study aimed to investigate the applicability of novel thawing strategies in order to provide an all‐year supply of high‐quality and safe cod products.publishedVersio
Near miss: the importance of the natural atmospheric CO2 concentration to human historical evolution
Factors that predict early treatment failure for patients with locally advanced (T4) breast cancer
Locally advanced breast cancer (LABC) is associated with dire prognosis despite progress in multimodal treatments. We evaluated several clinical and pathological features of patients with either noninflammatory (NIBC, cT4a-c) or inflammatory (IBC, cT4d) breast cancer to identify subset groups of patients with high risk of early treatment failure. Clinical and pathological features of 248 patients with LABC, who were treated with multimodality treatments including neoadjuvant chemotherapy followed by radical surgery and radiotherapy were reassessed. Tumour samples obtained at surgery were evaluated using standard immunohistochemical methods. Overall, 141 patients (57%) presented with NIBC (cT4a-c, N0-2, M0) and 107 patients (43%) with IBC (cT4d, N0-2, M0). Median follow-up time was 27.5 months (range: 1.6–87.8). No significant difference in terms of recurrence-free survival (RFS) (P=0.72), disease-free survival (DFS) (P=0.98) and overall survival (OS) (P=0.35) was observed between NIBC and IBC. At the multivariate analysis, patients with ER- and PgR-negative diseases had a significantly worse RFS than patients with ER- and/or PgR-positive diseases (hazard ratio: 2.47, 95% CI: 1.33–4.59 for overall). The worst RFS was observed for the subgroup of patients with endocrine nonresponsive and HER2-negative breast cancer (2-year RFS: 57% in NIBC and 57% in IBC) A high Ki-67 labelling index (>20% of the invasive tumour cells) and the presence of peritumoral vascular invasion (PVI) significantly correlated with poorer RFS in overall (HR 2.69, 95% CI: 1.61–4.50 for Ki-67>20% and HR 2.27, 95% CI: 1.42–3.62 for PVI). Patients with endocrine nonresponsive LABC had the most dire treatment outcome. High degree of Ki-67 staining and presence of PVI were also indicators of higher risk of early relapse. These factors should be considered in therapeutic algorithms for LABC
- …
