26 research outputs found

    Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation

    No full text
    The recent European mega-heatwaves of 2003 and 2010 broke temperature records across Europe(1-5). Although events of this magnitude were unprecedented from a historical perspective, they are expected to become common by the end of the century(6,7). However, our understanding of extreme heatwave events is limited and their representation in climate models remains imperfect(8). Here we investigate the physical processes underlying recent mega-heatwaves using satellite and balloon measurements of land and atmospheric conditions from the summers of 2003 in France and 2010 in Russia, in combination with a soil-water-atmosphere model. We find that, in both events, persistent atmospheric pressure patterns induced land-atmosphere feedbacks that led to extreme temperatures. During daytime, heat was supplied by large-scale horizontal advection, warming of an increasingly desiccated land surface and enhanced entrainment of warm air into the atmospheric boundary layer. Overnight, the heat generated during the day was preserved in an anomalous kilometres-deep atmospheric layer located several hundred metres above the surface, available to re-enter the atmospheric boundary layer during the next diurnal cycle. This resulted in a progressive accumulation of heat over several days, which enhanced soil desiccation and led to further escalation in air temperatures. Our findings suggest that the extreme temperatures in mega-heatwaves can be explained by the combined multi-day memory of the land surface and the atmospheric boundary layer

    Links between observed micro-meteorological variability and land-use patterns in the highveld priority area of South Africa

    No full text
    Links between spatial and temporal variability of Planetary Boundary Layer meteorological quantities and existing land-use patterns are still poorly understood due to the non-linearity of air–land interaction processes. This study describes the results of a statistical analysis of meteorological observations collected by a network of ten Automatic Weather Stations. The stations were in operation in the highveld priority area of the Republic of South Africa during 2008–2010. The analysis revealed localization, enhancement and homogenization in the inter-station variability of observed meteorological quantities (temperature, relative humidity and wind speed) over diurnal and seasonal cycles. Enhancement of the meteorological spatial variability was found on a broad range of scales from 20 to 50 km during morning hours and in the dry winter season. These spatial scales are comparable to scales of observed land-use heterogeneity, which suggests links between atmospheric variability and land-use patterns through excitation of horizontal meso-scale circulations. Convective motions homogenized and synchronized meteorological variability during afternoon hours in the winter seasons, and during large parts of the day during the moist summer season. The analysis also revealed that turbulent convection overwhelms horizontal meso-scale circulations in the study area during extensive parts of the annual cycleThe authors would like to acknowledge the bilateral Norway–South Africa project 180343/S50 “Analysis and the Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes” co-funded by the South African National Research Foundation (NRF) and the Norwegian Research Council (NRC). A significant part of this work has been developed under the NRC project 191516/V30 “Planetary boundary layer feedback in the Earth's Climate System”, under the European Research Council Advanced Grant, FP7-IDEAS, 227915 “Atmospheric planetary boundary layers: physics, modeling and its role in the Earth system”, and under a grant from the Government of the Russian Federation (project code 11.G34.31.0048).http://link.springer.com/journal/703hb201
    corecore