7 research outputs found

    Direct online HPLC-CV-AFS method for traces of methylmercury without derivatisation: a matrix-independent method for urine, sediment and biological tissue samples

    No full text
    Mercury (Hg) is a global pollutant which occurs in different species, with methylmercury (MeHg) being the critical compound due to its neurotoxicity and bioaccumulation through the food chain. Methods for trace speciation of MeHg are therefore needed for a vast range of sample matrices, such as biological tissues, fluids, soils or sediments. We have previously developed an ultra-trace speciation method for methylmercury in water, based on a preconcentration HPLC cold vapour atomic fluorescence spectrometry (HPLC-CV-AFS) method. The focus of this work is mercury speciation in a variety of sample matrices to assess the versatility of the method. Certified reference materials were used where possible, and samples were spiked where reference materials were not available, e.g. human urine. Solid samples were submitted for commonly used digestion or extraction processes to obtain a liquid sample for injection into the analytical system. For MeHg in sediment samples, an extraction procedure was adapted to accommodate MeHg separation from high amounts of Hg(2+) to avoid an overload of the column. The recovery for MeHg determination was found to be in the range of 88-104% in fish reference materials (DOLT-2, DOLT-4, DORM-3), lobster (TORT-2), seaweed (IAEA-140/TM), sediments (ERM(®)-CC580) and spiked urine and has been proven to be robust, reliable, virtually matrix-independent and relatively cost-effective. Applications in the ultra-trace concentration range are possible using the preconcentration up to 200 mL, while for higher MeHg-containing samples, lower volumes can be applied. A comparison was carried out between species-specific isotope dilution gas chromatography inductively coupled plasma mass spectrometry (SSID-GC-ICP-MS) as the gold standard and HPLC-CV-AFS for biological tissues (liver, kidney and muscle of pilot whales), showing a slope of 1.008 and R (2) = 0.97, which indicates that the HPLC-CV-AFS method achieves well-correlated results for MeHg in biological tissues

    Active hydrothermal fluids circulation triggering small-scale collapse events: the case of the 2001–2002 fissure in the Lakki Plain (Nisyros Island, Aegean Sea, Greece)

    No full text
    In 2001–2002, two ground collapses occurred in the island of Nisyros (Aegean Sea, Greece), which formed a 600 m long and up to 5 m wide fissure in the vegetated central part of the Lakki Plain caldera. The fissure was alternatively ascribed to tensional stress release and hydrothermal alteration. In this study, we present original data of diffuse CO2 soil fluxes, soil temperatures, mineralogical and chemical composition of the calderafilling deposits exposed on the fissure walls, and chemical and isotopic composition of interstitial soil gases collected from: the bottom of the fissure, the adjacent vegetated areas, the hydrothermal craters, and selected sites outside the caldera. The occurrence of intense hydrothermal alteration was shown by both mineralogical and chemical analyses of the fissure walls material. Typical mineral assemblage and enrichments in incompatible elements related to advanced argillic alteration, characterizing steam-heated hydrothermal environments, were recognized. Although the low-permeable sediment cover in the Lakki Plain concealed the underneath hydrothermal gas flow, preventing anomalous soil temperatures and CO2 fluxes, the chemical and isotopic composition of the interstitial soil gases revealed an active hydrothermal fluids circulation below the collapsed area, likely controlled by buried structural lineaments. Hydrothermal alteration can then be invoked as the most likely trigger mechanism for the 2001–2002 collapse event

    How to Deal with Mercury in Sediments? A Critical Review About Used Methods for the Speciation of Mercury in Sediments

    No full text

    Gewässerbelastungen durch organische Stoffe

    No full text
    corecore