145 research outputs found
Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth
Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations
Are liver and renal lesions in East Greenland polar bears (Ursus maritimus) associated with high mercury levels?
BACKGROUND: In the Arctic, polar bears (Ursus maritimus) bio-accumulate mercury as they prey on polluted ringed seals (Phoca hispida) and bearded seals (Erignathus barbatus). Studies have shown that polar bears from East Greenland are among the most mercury polluted species in the Arctic. It is unknown whether these levels are toxic to liver and kidney tissue. METHODS: We investigated the histopathological impact from anthropogenic long-range transported mercury on East Greenland polar bear liver (n = 59) and kidney (n = 57) tissues. RESULTS: Liver mercury levels ranged from 1.1–35.6 μg/g wet weight and renal levels ranged from 1–50 μg/g wet weight, of which 2 liver values and 9 kidney values were above known toxic threshold level of 30 μg/g wet weight in terrestrial mammals. Evaluated from age-correcting ANCOVA analyses, liver mercury levels were significantly higher in individuals with visible Ito cells (p < 0.02) and a similar trend was found for lipid granulomas (p = 0.07). Liver mercury levels were significantly lower in individuals with portal bile duct proliferation/fibrosis (p = 0.007) and a similar trend was found for proximal convoluted tubular hyalinisation in renal tissue (p = 0.07). CONCLUSION: Based on these relationships and the nature of the chronic inflammation we conclude that the lesions were likely a result of recurrent infections and ageing but that long-term exposure to mercury could not be excluded as a co-factor. The information is important as it is likely that tropospheric mercury depletion events will continue to increase the concentrations of this toxic heavy metal in the Sub Arctic and Arctic marine food webs
Erlotinib inhibits osteolytic bone invasion of human non-small-cell lung cancer cell line NCI-H292
Previous preclinical and clinical findings have suggested a potential role of epidermal growth factor receptor (EGFR) in osteoclast differentiation and the pathogenesis of bone metastasis in cancer. In this study, we investigated the effect of erlotinib, an orally active EGFR tyrosine kinase inhibitor (TKI), on the bone invasion of human non-small-cell lung cancer (NSCLC) cell line NCI-H292. First, we established a novel osteolytic bone invasion model of NCI-H292 cells which was made by inoculating cancer cells into the tibia of scid mice. In this model, NCI-H292 cells markedly activated osteoclasts in tibia, which resulted in osteolytic bone destruction. Erlotinib treatment suppressed osteoclast activation to the basal level through suppressing receptor activator of NF-κB ligand (RANKL) expression in osteoblast/stromal cell at the bone metastatic sites, which leads to inhibition of osteolytic bone destruction caused by NCI-H292 cells. Erlotinib inhibited the proliferation of NCI-H292 cells in in vitro. Erlotinib suppressed the production of osteolytic factors, such as parathyroid hormone-related protein (PTHrP), IL-8, IL-11 and vascular endothelial growth factor (VEGF) in NCI-H292 cells. Furthermore, erlotinib also inhibited osteoblast/stromal cell proliferation in vitro and the development of osteoclasts induced by RANKL in vitro. In conclusion, erlotinib inhibits tumor-induced osteolytic invasion in bone metastasis by suppressing osteoclast activation through inhibiting tumor growth at the bone metastatic sites, osteolytic factor production in tumor cells, osteoblast/stromal cell proliferation and osteoclast differentiation from mouse bone marrow cells
Brain iron accumulation in unexplained fetal and infant death victims with smoker mothers-The possible involvement of maternal methemoglobinemia
<p>Abstract</p> <p>Background</p> <p>Iron is involved in important vital functions as an essential component of the oxygen-transporting heme mechanism. In this study we aimed to evaluate whether oxidative metabolites from maternal cigarette smoke could affect iron homeostasis in the brain of victims of sudden unexplained fetal and infant death, maybe through the induction of maternal hemoglobin damage, such as in case of methemoglobinemia.</p> <p>Methods</p> <p>Histochemical investigations by Prussian blue reaction were made on brain nonheme ferric iron deposits, gaining detailed data on their localization in the brainstem and cerebellum of victims of sudden death and controls. The Gless and Marsland's modification of Bielschowsky's was used to identify neuronal cell bodies and neurofilaments.</p> <p>Results</p> <p>Our approach highlighted accumulations of blue granulations, indicative of iron positive reactions, in the brainstem and cerebellum of 33% of victims of sudden death and in none of the control group. The modified Bielschowsky's method confirmed that the cells with iron accumulations were neuronal cells.</p> <p>Conclusions</p> <p>We propose that the free iron deposition in the brain of sudden fetal and infant death victims could be a catabolic product of maternal methemoglobinemia, a biomarker of oxidative stress likely due to nicotine absorption.</p
Phosphoinositide-3 Kinase-Akt Pathway Controls Cellular Entry of Ebola Virus
The phosphoinositide-3 kinase (PI3K) pathway regulates diverse cellular activities related to cell growth, migration, survival, and vesicular trafficking. It is known that Ebola virus requires endocytosis to establish an infection. However, the cellular signals that mediate this uptake were unknown for Ebola virus as well as many other viruses. Here, the involvement of PI3K in Ebola virus entry was studied. A novel and critical role of the PI3K signaling pathway was demonstrated in cell entry of Zaire Ebola virus (ZEBOV). Inhibitors of PI3K and Akt significantly reduced infection by ZEBOV at an early step during the replication cycle. Furthermore, phosphorylation of Akt-1 was induced shortly after exposure of cells to radiation-inactivated ZEBOV, indicating that the virus actively induces the PI3K pathway and that replication was not required for this induction. Subsequent use of pseudotyped Ebola virus and/or Ebola virus-like particles, in a novel virus entry assay, provided evidence that activity of PI3K/Akt is required at the virus entry step. Class 1A PI3Ks appear to play a predominant role in regulating ZEBOV entry, and Rac1 is a key downstream effector in this regulatory cascade. Confocal imaging of fluorescently labeled ZEBOV indicated that inhibition of PI3K, Akt, or Rac1 disrupted normal uptake of virus particles into cells and resulted in aberrant accumulation of virus into a cytosolic compartment that was non-permissive for membrane fusion. We conclude that PI3K-mediated signaling plays an important role in regulating vesicular trafficking of ZEBOV necessary for cell entry. Disruption of this signaling leads to inappropriate trafficking within the cell and a block in steps leading to membrane fusion. These findings extend our current understanding of Ebola virus entry mechanism and may help in devising useful new strategies for treatment of Ebola virus infection
Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens
Ronald Ross and George Macdonald are credited with developing a mathematical model of mosquito-borne pathogen transmission. A systematic historical review suggests that several mathematicians and scientists contributed to development of the Ross-Macdonald model over a period of 70 years. Ross developed two different mathematical models, Macdonald a third, and various “Ross-Macdonald” mathematical models exist. Ross-Macdonald models are best defined by a consensus set of assumptions. The mathematical model is just one part of a theory for the dynamics and control of mosquito-transmitted pathogens that also includes epidemiological and entomological concepts and metrics for measuring transmission. All the basic elements of the theory had fallen into place by the end of the Global Malaria Eradication Programme (GMEP, 1955–1969) with the concept of vectorial capacity, methods for measuring key components of transmission by mosquitoes, and a quantitative theory of vector control. The Ross-Macdonald theory has since played a central role in development of research on mosquito-borne pathogen transmission and the development of strategies for mosquito-borne disease prevention
- …