1,544 research outputs found

    Effect of jet fuel aromatics on in-flame soot distribution and particle morphology in a small-bore compression ignition engine

    Full text link
    This study reports the effect of fuel aromatic content on soot particle development inside the cylinder of an optically accessible engine. A custom-made set of fuels of 4%, 14% and 24% aromatic content was carefully studied under pilot-main injection conditions. Time-resolved imaging of cool frame, OH* chemiluminescence signals and soot luminosity were performed to visualise the overall reaction development. Planar laser induced fluorescence imaging of HCHO and incandescence imaging of soot were also performed to obtain detailed understanding of reactions and soot distributions. Soot is analysed at a particle level. Using the thermophoresis-based particle sampling method, soot aggregates were collected from multiple in-bowl locations. The subsequent transmission electron microscope (TEM) imaging of the collected soot particles enables structural analysis of soot particles as well as sub-nano-scale carbon layers. The results showed that the aromatic content has little impact on reactions and flame development among the tested fuels. However, the soot formation starts to occur earlier, and its growth rate is much higher for a higher aromatic fuel. As a result, both the peak soot and remaining soot is measured higher for a higher aromatic fuel. The carbon-layer fringe analysis shows more mature, graphitised structures with higher aromatics at both formation-dominant and oxidation-dominant stages. The most noticeable trend is observed from larger soot aggregates for a higher aromatic fuel while the overall shapes are similar

    Addressing Security Properties in Systems of Systems: Challenges and Ideas

    Get PDF
    Within growing pervasive information systems, Systems of Systems (SoS) emerge as a new research frontier. A SoS is formed by a set of constituent systems that live on their own with well-established functionalities and requirements, and, in certain circumstances, they must collaborate to achieve a common mission. In this scenario, security is one crucial property that needs to be considered since the early stages of SoS lifecycle. Unfortunately, SoS security cannot be guaranteed by addressing the security of each constituent system separately. The aim of this paper is to discuss the challenges faced in addressing the security of SoS and to propose some research ideas centered around the notion of a mission to be carried out by the SoS.Ministerio dell'Universitá e della Ricerca (Italia) GAUSS 2015KWREMXMinisterio de Economía y Competitividad TIN2016-76956-C3-2-R (POLOLAS

    RBMS3 at 3p24 inhibits nasopharyngeal carcinoma development via inhibiting cell proliferation, angiogenesis, and inducing apoptosis.

    Get PDF
    Deletion of the short arm of chromosome 3 is one of the most frequent genetic alterations in many solid tumors including nasopharyngeal carcinoma (NPC), suggesting the existence of one or more tumor suppressor genes (TSGs) within the frequently deleted region. A putative TSG RBMS3 (RNA binding motif, single stranded interacting protein 3), located at 3p24-p23, has been identified in our previous study. Here, we reported that downregulation of RBMS3 was detected in 3/3 NPC cell lines and 13/15 (86.7%) primary NPC tissues. Functional studies using both overexpression and suppression systems demonstrated that RBMS3 has a strong tumor suppressive role in NPC. The tumor suppressive mechanism of RBMS3 was associated with its role in cell cycle arrest at the G1/S checkpoint by upregulating p53 and p21, downregulating cyclin E and CDK2, and the subsequent inhibition of Rb-ser780. Further analysis demonstrated that RBMS3 had a pro-apoptotic role in a mitochondrial-dependent manner via activation of caspase-9 and PARP. Finally, RBMS3 inhibited microvessel formation, which may be mediated by down-regulation of MMP2 and β-catenin and inactivation of its downstream targets, including cyclin-D1, c-Myc, MMP7, and MMP9. Taken together, our findings define a function for RBMS3 as an important tumor suppressor gene in NPC.published_or_final_versio

    Hazard Analysis of Critical Control Points Assessment as a Tool to Respond to Emerging Infectious Disease Outbreaks

    Get PDF
    Highly pathogenic avian influenza virus (HPAI) strain H5N1 has had direct and indirect economic impacts arising from direct mortality and control programmes in over 50 countries reporting poultry outbreaks. HPAI H5N1 is now reported as the most widespread and expensive zoonotic disease recorded and continues to pose a global health threat. The aim of this research was to assess the potential of utilising Hazard Analysis of Critical Control Points (HACCP) assessments in providing a framework for a rapid response to emerging infectious disease outbreaks. This novel approach applies a scientific process, widely used in food production systems, to assess risks related to a specific emerging health threat within a known zoonotic disease hotspot. We conducted a HACCP assessment for HPAI viruses within Vietnam’s domestic poultry trade and relate our findings to the existing literature. Our HACCP assessment identified poultry flock isolation, transportation, slaughter, preparation and consumption as critical control points for Vietnam’s domestic poultry trade. Introduction of the preventative measures highlighted through this HACCP evaluation would reduce the risks posed by HPAI viruses and pressure on the national economy. We conclude that this HACCP assessment provides compelling evidence for the future potential that HACCP analyses could play in initiating a rapid response to emerging infectious diseases

    In situ epitaxial MgB2 thin films for superconducting electronics

    Full text link
    A thin film technology compatible with multilayer device fabrication is critical for exploring the potential of the 39-K superconductor magnesium diboride for superconducting electronics. Using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process, it is shown that the high Mg vapor pressure necessary to keep the MgB2_2 phase thermodynamically stable can be achieved for the {\it in situ} growth of MgB2_2 thin films. The films grow epitaxially on (0001) sapphire and (0001) 4H-SiC substrates and show a bulk-like TcT_c of 39 K, a JcJ_c(4.2K) of 1.2×1071.2 \times 10^7 A/cm2^2 in zero field, and a Hc2(0)H_{c2}(0) of 29.2 T in parallel magnetic field. The surface is smooth with a root-mean-square roughness of 2.5 nm for MgB2_2 films on SiC. This deposition method opens tremendous opportunities for superconducting electronics using MgB2_2

    Quantum Computing

    Full text link
    Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked. These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century. However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness. In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates. Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes. Many research groups around the world are working towards one of the most ambitious goals humankind has ever embarked upon: a quantum computer that promises to exponentially improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for this task---ranging from single particles of light to superconducting circuits---and it is not yet clear which, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain what the major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53 (4 March 2010). Published version is more up-to-date and has several corrections, but is half the length with far fewer reference

    Comparative reliability and diagnostic performance of conventional 3T magnetic resonance imaging and 1.5T magnetic resonance arthrography for the evaluation of internal derangement of the hip

    Get PDF
    Objective; To compare the diagnostic accuracy of conventional 3T MRI against 1.5T MR arthrography (MRA) in patients with clinical femoroacetabular impingement (FAI). Methods; Sixty-eight consecutive patients with clinical FAI underwent both 1.5T MRA and 3T MRI. Imaging was prospectively analysed by two musculoskeletal radiologists, blinded to patient outcomes and scored for internal derangement including labral and cartilage abnormality. Interobserver variation was assessed by kappa analysis. Thirty-nine patients subsequently underwent hip arthroscopy and surgical results and radiology findings were analysed. Results; Both readers had higher sensitivities for detecting labral tears with 3T MRI compared to 1.5T MRA (not statistically significant p=0.07). For acetabular cartilage defect both readers had higher statistically significant sensitivities using 3T MRI compared to 1.5T MRA (p=0.02). Both readers had a slightly higher sensitivity for detecting delamination with 1.5T MRA compared to 3T MRI, but these differences were not statistically significant (p=0.66). Interobserver agreement was substantial to perfect agreement for all parameters except the identification of delamination (3T MRI showed moderate agreement and 1.5T MRA substantial agreement). Conclusion; Conventional 3T MRI may be at least equivalent to 1.5T MRA in detecting acetabular labrum and possibly superior to 1.5T MRA in detecting cartilage defects in patients with suspected FAI

    AFM, SEM and TEM Studies on Porous Anodic Alumina

    Get PDF
    Porous anodic alumina (PAA) has been intensively studied in past decade due to its applications for fabricating nanostructured materials. Since PAA’s pore diameter, thickness and shape vary too much, a systematical study on the methods of morphology characterization is meaningful and essential for its proper development and utilization. In this paper, we present detailed AFM, SEM and TEM studies on PAA and its evolvements with abundant microstructures, and discuss the advantages and disadvantages of each method. The sample preparation, testing skills and morphology analysis are discussed, especially on the differentiation during characterizing complex cross-sections and ultrasmall nanopores. The versatility of PAAs is also demonstrated by the diversity of PAAs’ microstructure

    Promoting Effect of Layered Titanium Phosphate on the Electrochemical and Photovoltaic Performance of Dye-Sensitized Solar Cells

    Get PDF
    We reported a composite electrolyte prepared by incorporating layered α-titanium phosphate (α-TiP) into an iodide-based electrolyte using 1-ethyl-3-methylimidazolium tetrafluoroborate(EmimBF4) ionic liquid as solvent. The obtained composite electrolyte exhibited excellent electrochemical and photovoltaic properties compared to pure ionic liquid electrolyte. Both the diffusion coefficient of triiodide (I3−) in the electrolyte and the charge-transfer reaction at the electrode/electrolyte interface were improved markedly. The mechanism for the enhanced electrochemical properties of the composite electrolyte was discussed. The highest conversion efficiency of dye-sensitized solar cell (DSSC) was obtained for the composite electrolyte containing 1wt% α-TiP, with an improvement of 58% in the conversion efficiency than the blank one, which offered a broad prospect for the fabrication of stable DSSCs with a high conversion efficiency
    corecore