115 research outputs found

    Probing the local nature of excitons and plasmons in few-layer MoSâ‚‚

    Get PDF
    Excitons and plasmons are the two most fundamental types of collective electronic excitations occurring in solids. Traditionally, they have been studied separately using bulk techniques that probe their average energetic structure over large spatial regions. However, as the dimensions of materials and devices continue to shrink, it becomes crucial to understand how these excitations depend on local variations in the crystal- and chemical structure on the atomic scale. Here, we use monochromated low-loss scanning-transmission-electron-microscopy electron-energy-loss spectroscopy, providing the best simultaneous energy and spatial resolution achieved to-date to unravel the full set of electronic excitations in few-layer MoS₂ nanosheets over a wide energy range. Using first-principles, many-body calculations we confirm the excitonic nature of the peaks at ~ 2 and ~ 3 eV in the experimental electron-energy-loss spectrum and the plasmonic nature of higher energy-loss peaks. We also rationalise the non-trivial dependence of the electron-energy-loss spectrum on beam and sample geometry such as the number of atomic layers and distance to steps and edges. Moreover, we show that the excitonic features are dominated by the long wavelength (q = 0) components of the probing field, while the plasmonic features are sensitive to a much broader range of q-vectors, indicating a qualitative difference in the spatial character of the two types of collective excitations. Our work provides a template protocol for mapping the local nature of electronic excitations that open new possibilities for studying photo-absorption and energy transfer processes on a nanometer scale

    La cuerda dulce – a tolerability and acceptability study of a novel approach to specimen collection for diagnosis of paediatric pulmonary tuberculosis

    Get PDF
    BACKGROUND: Recent data demonstrate the utility of the string test for the diagnosis of sputum-scarce HIV-associated TB in adults. We hypothesized that, if well-tolerated by children, this simple tool might offer a breakthrough in paediatric TB diagnosis. Thus the objective of this study, undertaken in the paediatric service of the Hospital Nacional Dos de Mayo, Lima, Perú, was to determine the tolerability and acceptability of the string test to paediatric TB suspects, their parents and nursing staff. METHODS: 22 paediatric subjects aged 3–14 years (median 8) under investigation for TB were invited to undergo 2 string tests (four-hour downtime each). Subjective and objective pain and discomfort rating scales were used to assess the perception of the subject, parent and attending nurse. RESULTS: Patients as young as 4 years tolerated the procedure extremely well with 84% willing to undergo a second procedure. Peak discomfort at the time of swallowing and of string retrieval was mild (30% of maximum possible score) and brief as judged by visual analogue ratings and objective indicators. Good concordance of parent/child and objective/subjective ratings strengthened the validity of these findings. CONCLUSION: The string test is well tolerated and achievable for most paediatric TB suspects as young as 4 years. A formal prospective paediatric efficacy study is now needed

    Somatostatin Receptor 1 and 5 Double Knockout Mice Mimic Neurochemical Changes of Huntington's Disease Transgenic Mice

    Get PDF
    Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD). However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST) positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5). and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice.This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the pathophysiology of Huntington's disease

    Granular Assembly of α-Synuclein Leading to the Accelerated Amyloid Fibril Formation with Shear Stress

    Get PDF
    α-Synuclein participates in the Lewy body formation of Parkinson's disease. Elucidation of the underlying molecular mechanism of the amyloid fibril formation is crucial not only to develop a controlling strategy toward the disease, but also to apply the protein fibrils for future biotechnology. Discernable homogeneous granules of α-synuclein composed of approximately 11 monomers in average were isolated in the middle of a lag phase during the in vitro fibrillation process. They were demonstrated to experience almost instantaneous fibrillation during a single 12-min centrifugal membrane-filtration at 14,000×g. The granular assembly leading to the drastically accelerated fibril formation was demonstrated to be a result of the physical influence of shear force imposed on the preformed granular structures by either centrifugal filtration or rheometer. Structural rearrangement of the preformed oligomomeric structures is attributable for the suprastructure formation in which the granules act as a growing unit for the fibril formation. To parallel the prevailing notion of nucleation-dependent amyloidosis, we propose a double-concerted fibrillation model as one of the mechanisms to explain the in vitro fibrillation of α-synuclein, in which two consecutive concerted associations of monomers and subsequent oligomeric granular species are responsible for the eventual amyloid fibril formation

    A High-Resolution Map of Human Evolutionary Constraint Using 29 Mammals

    Get PDF
    The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ~4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ~60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.National Human Genome Research Institute (U.S.)National Institute of General Medical Sciences (U.S.) (Grant number GM82901)National Science Foundation (U.S.). Postdoctural Fellowship (Award 0905968)National Science Foundation (U.S.). Career (0644282)National Institutes of Health (U.S.) (R01-HG004037)Alfred P. Sloan Foundation.Austrian Science Fund. Erwin Schrodinger Fellowshi

    Biofluid Biomarkers in Huntington's Disease

    Get PDF
    Huntington's disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability

    Investigation of short-term surgical complications in a low-resource, high-volume dog sterilisation clinic in India

    Get PDF
    Abstract Background Surgical sterilisation is currently the method of choice for controlling free-roaming dog populations. However, there are significant logistical challenges to neutering large numbers of dogs in low-resource clinics. The aim of this study was to investigate the incidence of short-term surgical complications in a low-resource sterilisation clinic which did not routinely administer post-operative antibiotics. The medical records of all sterilisation surgeries performed in 2015 at the Worldwide Veterinary Service International Training Centre in Tamil Nadu, India were reviewed (group A) to assess immediate surgical complications. All animals in this group were monitored for at least 24 h post-surgery but were not released until assessed by a veterinarian as having uncomplicated wound healing. In the second part of this study from August to December 2015, 200 free-roaming dogs undergoing sterilisation surgery, were monitored for a minimum of 4-days post-surgery to further assess postoperative complications (group B). Results Surgery related complications were seen in 5.4% (95%CI, 4.5–6.5%) of the 1998 group A dogs monitored for at least 24 h, and in 7.0% (3.9–11.5%) of the 200 group B dogs monitored for 4 days. Major complications were classed as those requiring an intervention and resulted in increased morbidity or mortality. Major complications were seen in 2.8% (2.1–3.6%) and 1.5% (3.1–4.3%) of group A and B, respectively. Minor complications requiring little or no intervention were recorded for 2.6% (1.9–3.4%) for group A and 5.5% (2.8–9.6%) for group B. There was no evidence for a difference in complication rates between the two groups in a multivariate regression model. Conclusion This study demonstrated that high volume, low-resource sterilisation of dogs can be performed with a low incidence of surgical complications and low mortality

    A user's guide to the Encyclopedia of DNA elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome
    • …
    corecore