83 research outputs found

    CCR5 signalling, but not DARC or D6 regulatory, chemokine receptors are targeted by herpesvirus U83A chemokine which delays receptor internalisation via diversion to a caveolin-linked pathway

    Get PDF
    BACKGROUND: Herpesviruses have evolved chemokines and chemokine receptors, which modulate the recruitment of human leukocytes during the inflammatory response to infection. Early post-infection, human herpesvirus 6A (HHV-6A) infected cells express the chemokine receptor U51A and chemokine U83A which have complementary effects in subverting the CC-chemokine family thereby controlling anti-viral leukocyte recruitment. Here we show that, to potentiate this activity, the viral chemokine can also avoid clearance by scavenger chemokine receptors, DARC and D6, which normally regulate an inflammatory response. Conversely, U83A delays internalisation of its signalling target receptor CCR5 with diversion to caveolin rich membrane domains. This mechanism can redirect displaced human chemokines to DARC and D6 for clearance of the anti-viral inflammatory response, leaving the viral chemokine unchecked. METHODS: Cell models for competitive binding assays were established using radiolabeled human chemokines and cold U83A on CCR5, DARC or D6 expressing cells. Flow cytometry was used to assess specific chemotaxis of CCR5 bearing cells to U83A, and internalisation of CCR5 specific chemokine CCL4 after stimulation with U83A. Internalisation analyses were supported by confocal microscopy of internalisation and co-localisation of CCR5 with caveosome marker caveolin-1, after virus or human chemokine stimulation. RESULTS: U83A displaced efficiently human chemokines from CCR5, with a high affinity of 0.01nM, but not from DARC or D6. Signalling via CCR5 resulted in specific chemoattraction of primary human leukocytes bearing CCR5. However, U83A effective binding and signalling to CCR5 resulted in delayed internalisation and recycling up to 2 hours in the absence of continual re-stimulation. This resulted in diversion to a delayed caveolin-linked pathway rather than the rapid clathrin mediated endocytosis previously shown with human chemokines CCL3 or CCL4. CONCLUSION: U83A diverts human chemokines from signalling, but not regulatory or scavenger, receptors facilitating their clearance, while occupying signalling receptors at the cell surface. This can enhance virus specific inflammation, facilitating dissemination to replication sensitive leukocytes while evading clearance; this has implications for linked neuro-inflammatory pathologies

    Role of the atypical chemoattractant receptor CRAM in regulating CCL19 induced CCR7 responses in B-cell chronic lymphocytic leukemia

    Get PDF
    BACKGROUND: The non-signalling chemokine receptors, including receptors DARC, D6 and CCX-CKR, have recently been shown to be involved in chemokine clearance and activity regulation. The human chemokine receptor CRAM (also known as HCR or CCRL2) is the most recently identified member of this atypical group. CRAM is expressed on B cells in a maturation-stage dependent manner and absent on T cells. We have recently shown that it competitively binds CCL19. CCL19 and its signalling receptor CCR7 are critical components involved in cell recruitment to secondary lymphoid organs and in maturation. B cell Chronic Lymphocytic Leukemia (B-CLL) is a low-grade lymphoma characterized by proliferative centres (or pseudofollicles). Proliferative centres develop due to abnormal cellular localisation and they are involved in the development of malignant cells. CCR7 is highly expressed on B cells from CLL patients and mediates migration towards its ligands CCL19 and CCL21, while CRAM expression and potential interferences with CCR7 are yet to be characterized. RESULTS: In this study, we show that B cells from patients with B-CLL present highly variable degrees of CRAM expression in contrast to more consistently high levels of CCR7. We investigated the hypothesis that, similar to the atypical receptor DARC, CRAM can modulate chemokine availability and/or efficacy, resulting in the regulation of cellular activation. We found that a high level of CRAM expression was detrimental to efficient chemotaxis with CCL19. MAP-kinase phosphorylation and intracellular calcium release induced by CCL19 were also altered by CRAM expression. In addition, we demonstrate that CRAM-induced regulation of CCL19 signalling is maintained over time. CONCLUSIONS: We postulate that CRAM is a factor involved in the fine tuning/control of CCR7/CCL19 mediated responses. This regulation could be critical to the pivotal role of CCL19 induced formation of proliferation centres supporting the T/B cells encounter as well as disease progression in B-CLL

    Diverging Mechanisms of Activation of Chemokine Receptors Revealed by Novel Chemokine Agonists

    Get PDF
    CXCL8/interleukin-8 is a pro-inflammatory chemokine that triggers pleiotropic responses, including inflammation, angiogenesis, wound healing and tumorigenesis. We engineered the first selective CXCR1 agonists on the basis of residue substitutions in the conserved ELR triad and CXC motif of CXCL8. Our data reveal that the molecular mechanisms of activation of CXCR1 and CXCR2 are distinct: the N-loop of CXCL8 is the major determinant for CXCR1 activation, whereas the N-terminus of CXCL8 (ELR and CXC) is essential for CXCR2 activation. We also found that activation of CXCR1 cross-desensitized CXCR2 responses in human neutrophils co-expressing both receptors, indicating that these novel CXCR1 agonists represent a new class of anti-inflammatory agents. Further, these selective CXCR1 agonists will aid at elucidating the functional significance of CXCR1 in vivo under pathophysiological conditions

    Techonolgy of Qualea grandiflora Mart. (Vochysiaceae) seeds

    Get PDF
    Qualea grandiflora Mart. (Vochysiaceae), commonly known as "pau-terra", is an arborous species native to the Brazilian savannah which possess commercial interests, as it can be used either as an ornamental or as a medicinal plant. "Pau-terra" can also be used in the heterogeneous reforestation of areas which are destined for restoration of permanent preservation degraded areas. Propagation studies with this species are scarce, being necessary then further clarification regarding the factors that influences the germination process. In this context, the objective of this work was to evaluate the influence of different temperatures, substrates and light conditions on seed germination. We selected light brown seeds which were subjected to different interactions between temperatures (15-25, 20-30, 25 and 30°C), substrate (paper, sand and vermiculite) and light (light and dark). All seeds were later dry-incubated at 32°C for 3, 6 and 12 hours. After treatments, seeds were kept in BOD at 58% RH and the following parameters were calculated: germination (%G) and germination speed index (GSI); the formation of normal and abnormal seedlings and the number dead seeds. Interaction was observed for all variables. In the optimum temperature range, the seeds behaved as photoblastic neutral or indifferent. Under alternating temperatures, darkness enhanced the germination, especially when combined with the lower temperatures. We noted that the sowing in sand, at 25°C, allowed the maintenance of suitable combinations of germination and seedling development. With respect to desiccation tolerance, "pau-terra" seeds presented an orthodox behavior, with a linear increase of the vigor as function of drying

    Collagen mRNA levels changes during colorectal cancer carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invasive growth of epithelial cancers is a complex multi-step process which involves dissolution of the basement membrane. Type IV collagen is a major component in most basement membranes. Type VII collagen is related to anchoring fibrils and is found primarily in the basement membrane zone of stratified epithelia. Immunohistochemical studies have previously reported changes in steady-state levels of different α(IV) chains in several epithelial cancer types. In the present study we aimed to quantitatively determine the mRNA levels of <it>type IV collagen (α1/α4/α6) </it>and <it>type VII collagen (α1) </it>during colorectal cancer carcinogenesis.</p> <p>Methods</p> <p>Using quantitative RT-PCR, we have determined the mRNA levels for <it>α1(IV), α4(IV), α6(IV), and α1(VII) </it>in colorectal cancer tissue (n = 33), adenomas (n = 29) and in normal tissue from the same individuals. In addition, corresponding tissue was examined from healthy volunteers (n = 20). mRNA levels were normalized to <it>β-actin</it>. Immunohistochemical analysis of the distributions of type IV and type VII collagens were performed on normal and affected tissues from colorectal cancer patients.</p> <p>Results</p> <p>The <it>α1(IV) </it>and <it>α1(VII) </it>mRNA levels were statistically significantly higher in colorectal cancer tissue (p < 0.001) as compared to corresponding tissue from healthy controls. This is an early event as tissue from adenomas also displayed a higher level. There were small changes in the levels of <it>α4(IV)</it>. The level of <it>α6(IV) </it>was 5-fold lower in colorectal cancer tissue as compared to healthy individuals (p < 0.01). The localisation of type IV and type VII collagen was visualized by immunohistochemical staining.</p> <p>Conclusion</p> <p>Our results suggest that the down-regulation of <it>α6(IV</it>) mRNA coincides with the acquisition of invasive growth properties, whereas <it>α1(IV) </it>and <it>α1(VII) </it>mRNAs were up-regulated already in dysplastic tissue. There are no differences in collagen expression between tissues from healthy individuals and normal tissues from affected individuals.</p

    (B)ordering South of Lebanon: Hizbullah’s identity building strategy

    Get PDF
    International audienceThis paper examines the importance of the Lebanese southern borderland area in the political strategy of Hizbullah's identity building. It highlights how Hizbullah succeeded in its quest to become a major political player in Lebanon by using South Lebanon. The main hypothesis is that this borderland area has been ordered and bordered by Hizbullah to create a common identity among the Lebanese Shi'i population based on a Shi'i religious involvement and the " duty " of armed resistance against Israel. To support this idea, I will rely on a theoretical framework articulating space and identity building and will refer to concepts provided by Middle Eastern studies. In the first part of the paper, I will discuss the conditions of the emergence of the group of solidarity and how it articulates to the religious Shi'i ideology. Then, I will highlight the " lebanonization " process Hizbullah undertaken at the end of the civil war and how during the 1990s it transformed the South into a sanctuary. Finally, I will show how Hizbullah enforced the national legitimacy of its social, political and military actions before targeting the state apparatus

    Classification of Ancient Mammal Individuals Using Dental Pulp MALDI-TOF MS Peptide Profiling

    Get PDF
    International audienceBackground The classification of ancient animal corpses at the species level remains a challenging task for forensic scientists and anthropologists. Severe damage and mixed, tiny pieces originating from several skeletons may render morphological classification virtually impossible. Standard approaches are based on sequencing mitochondrial and nuclear targets. Methodology/Principal Findings We present a method that can accurately classify mammalian species using dental pulp and mass spectrometry peptide profiling. Our work was organized into three successive steps. First, after extracting proteins from the dental pulp collected from 37 modern individuals representing 13 mammalian species, trypsin-digested peptides were used for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. The resulting peptide profiles accurately classified every individual at the species level in agreement with parallel cytochrome b gene sequencing gold standard. Second, using a 279-modern spectrum database, we blindly classified 33 of 37 teeth collected in 37 modern individuals (89.1%). Third, we classified 10 of 18 teeth (56%) collected in 15 ancient individuals representing five mammal species including human, from five burial sites dating back 8,500 years. Further comparison with an upgraded database comprising ancient specimen profiles yielded 100% classification in ancient teeth. Peptide sequencing yield 4 and 16 different non-keratin proteins including collagen (alpha-1 type I and alpha-2 type I) in human ancient and modern dental pulp, respectively. Conclusions/Significance Mass spectrometry peptide profiling of the dental pulp is a new approach that can be added to the arsenal of species classification tools for forensics and anthropology as a complementary method to DNA sequencing. The dental pulp is a new source for collagen and other proteins for the species classification of modern and ancient mammal individuals

    Efficacy and safety of acoziborole in patients with human African trypanosomiasis caused by Trypanosoma brucei gambiense: a multicentre, open-label, single-arm, phase 2/3 trial

    Get PDF
    Summary Background Human African trypanosomiasis caused by Trypanosoma brucei gambiense (gambiense HAT) in patients with late-stage disease requires hospital admission to receive nifurtimox-eflornithine combination therapy (NECT). Fexinidazole, the latest treatment that has been recommended by WHO, also requires systematic admission to hospital, which is problematic in areas with few health-care resources. We aim to assess the safety and efficacy of acoziborole in adult and adolescent patients with gambiense HAT. Methods This multicentre, prospective, open-label, single-arm, phase 2/3 study recruited patients aged 15 years or older with confirmed gambiense HAT infection from ten hospitals in the Democratic Republic of the Congo and Guinea. Inclusion criteria included a Karnofsky score less than 50, ability to swallow tablets, a permanent address or traceability, ability to comply with follow-up visits and study requirements, and agreement to hospital admission during treatment. Oral acoziborole was administered as a single 960 mg dose (3 × 320 mg tablets) to fasted patients. Patients were observed in hospital until day 15 after treatment administration then for 18 months as outpatients with visits at 3, 6, 12, and 18 months. The primary efficacy endpoint was the success rate of acoziborole treatment at 18 months in patients with late-stage gambiense HAT (modified intention-to-treat [mITT] population), based on modified WHO criteria. A complementary post-hoc analysis comparing the 18-month success rates for acoziborole and NECT (using historical data) was performed. This study is registered at ClinicalTrials.gov, NCT03087955. Findings Between Oct 11, 2016, and March 25, 2019, 260 patients were screened, of whom 52 were ineligible and 208 were enrolled (167 with late-stage and 41 with early-stage or intermediate-stage gambiense HAT; primary efficacy analysis set). All 41 (100%) patients with early-stage or intermediate-stage and 160 (96%) of 167 with late-stage disease completed the last 18-month follow-up visit. The mean age of participants was 34·0 years (SD 12·4), including 117 (56%) men and 91 (44%) women. Treatment success rate at 18 months was 95·2% (95% CI 91·2-97·7) reached in 159 of 167 patients with late-stage gambiense HAT (mITT population) and 98·1% (95·1-99·5) reached in 159 of 162 patients (evaluable population). Overall, 155 (75%) of 208 patients had 600 treatment-emergent adverse events. A total of 38 drug-related treatment-emergent adverse events occurred in 29 (14%) patients; all were mild or moderate and most common were pyrexia and asthenia. Four deaths occurred during the study; none were considered treatment related. The post-hoc analysis showed similar results to the estimated historical success rate for NECT of 94%. Interpretation Given the high efficacy and favourable safety profile, acoziborole holds promise in the efforts to reach the WHO goal of interrupting HAT transmission by 2030. Funding Bill & Melinda Gates Foundation, UK Aid, Federal Ministry of Education and Research, Swiss Agency for Development and Cooperation, Médecins Sans Frontières, Dutch Ministry of Foreign Affairs, Norwegian Agency for Development Cooperation, Norwegian Ministry of Foreign Affairs, the Stavros Niarchos Foundation, Spanish Agency for International Development Cooperation, and the Banco Bilbao Vizcaya Argentaria Foundation. Translation For the French translation of the abstract see Supplementary Materials section

    Proteomics and Posttranslational Proteomics of Seed Dormancy and Germination

    Get PDF
    The seed is the dispersal unit of plants and must survive the vagaries of the environment. It is the object of intense genetic and genomic studies because processes related to seed quality affect crop yield and the seed itself provides food for humans and animals. Presently, the general aim of postgenomics analyses is to understand the complex biochemical and molecular processes underlying seed quality, longevity, dormancy, and vigor. Due to advances in functional genomics, the recent past years have seen a tremendous progress in our understanding of several aspects of seed development and germination. Here, we describe the proteomics protocols (from protein extraction to mass spectrometry) that can be used to investigate several aspects of seed physiology, including germination and its hormonal regulation, dormancy release, and seed longevity. These techniques can be applied to the study of both model plants (such as Arabidopsis) and crops

    Metabolic Adaptation in Transplastomic Plants Massively Accumulating Recombinant Proteins

    Get PDF
    BACKGROUND: Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Here we used proteomics to characterize tobacco (Nicotiana tabacum) plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD) or a green fluorescent protein (GFP). While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO(2) metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. CONCLUSIONS/SIGNIFICANCE: The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation
    corecore