26,174 research outputs found
Effects of a mixed vector-scalar kink-like potential for spinless particles in two-dimensional spacetime
The intrinsically relativistic problem of spinless particles subject to a
general mixing of vector and scalar kink-like potentials () is investigated. The problem is mapped into the exactly solvable
Surm-Liouville problem with the Rosen-Morse potential and exact bounded
solutions for particles and antiparticles are found. The behaviour of the
spectrum is discussed in some detail. An apparent paradox concerning the
uncertainty principle is solved by recurring to the concept of effective
Compton wavelength.Comment: 13 pages, 4 figure
Spin and Pseudospin symmetries in the Dirac equation with central Coulomb potentials
We analyze in detail the analytical solutions of the Dirac equation with
scalar S and vector V Coulomb radial potentials near the limit of spin and
pseudospin symmetries, i.e., when those potentials have the same magnitude and
either the same sign or opposite signs, respectively. By performing an
expansion of the relevant coefficients we also assess the perturbative nature
of both symmetries and their relations the (pseudo)spin-orbit coupling. The
former analysis is made for both positive and negative energy solutions and we
reproduce the relations between spin and pseudospin symmetries found before for
nuclear mean-field potentials. We discuss the node structure of the radial
functions and the quantum numbers of the solutions when there is spin or
pseudospin symmetry, which we find to be similar to the well-known solutions of
hydrogenic atoms.Comment: 9 pages, 2 figures, uses revte
The influence of statistical properties of Fourier coefficients on random surfaces
Many examples of natural systems can be described by random Gaussian
surfaces. Much can be learned by analyzing the Fourier expansion of the
surfaces, from which it is possible to determine the corresponding Hurst
exponent and consequently establish the presence of scale invariance. We show
that this symmetry is not affected by the distribution of the modulus of the
Fourier coefficients. Furthermore, we investigate the role of the Fourier
phases of random surfaces. In particular, we show how the surface is affected
by a non-uniform distribution of phases
On the regular-geometric-figure solution to the N-body problem
The regular-geometric-figure solution to the -body problem is presented in
a very simple way. The Newtonian formalism is used without resorting to a more
involved rotating coordinate system. Those configurations occur for other kinds
of interactions beyond the gravitational ones for some special values of the
parameters of the forces. For the harmonic oscillator, in particular, it is
shown that the -body problem is reduced to one-body problems.Comment: To appear in Eur. J. Phys. (5 pages
- …