4,944 research outputs found
Analytic Results for the Gravitational Radiation from a Class of Cosmic String Loops
Cosmic string loops are defined by a pair of periodic functions and
, which trace out unit-length closed curves in three-dimensional
space. We consider a particular class of loops, for which lies along
a line and lies in the plane orthogonal to that line. For this class
of cosmic string loops one may give a simple analytic expression for the power
radiated in gravitational waves. We evaluate exactly in
closed form for several special cases: (1) a circle traversed
times; (2) a regular polygon with sides and interior vertex angle
; (3) an isosceles triangle with semi-angle .
We prove that case (1) with is the absolute minimum of within
our special class of loops, and identify all the stationary points of
in this class.Comment: 15 pages, RevTex 3.0, 7 figures available via anonymous ftp from
directory pub/pcasper at alpha1.csd.uwm.edu, WISC-MILW-94-TH-1
Experimenting with ecosystem interaction networks in search of threshold potentials in real-world marine ecosystems
Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to break points in dynamics, which theory predicts predispose a system to a critical transition
High energy cosmic-rays: puzzles, models, and giga-ton neutrino telescopes
The existence of cosmic rays of energies exceeding 10^20 eV is one of the
mysteries of high energy astrophysics. The spectrum and the high energy to
which it extends rule out almost all suggested source models. The challenges
posed by observations to models for the origin of high energy cosmic rays are
reviewed, and the implications of recent new experimental results are
discussed. Large area high energy cosmic ray detectors and large volume high
energy neutrino detectors currently under construction may resolve the high
energy cosmic ray puzzle, and shed light on the identity and physics of the
most powerful accelerators in the universe.Comment: 12 pages, 7 figures; Summary of review talk, PASCOS 03 (Mumbai,
India
Unconventional superstring derived E models and neutrino phenomenology
Conventional superstring derived E models can accommodate small neutrino
masses if a discrete symmetry is imposed which forbids tree level Dirac
neutrino masses but allows for radiative mass generation. Since the only
possible symmetries of this kind are known to be generation dependent, we
explore the possibility that the three sets of light states in each generation
do not have the same assignments with respect to the 27 of , leading to
non universal gauge interactions under the additional factors for the
known fermions. We argue that models realising such a scenario are viable, with
their structure being constrained mainly by the requirement of the absence of
flavor changing neutral currents in the Higgs sector. Moreover, in contrast to
the standard case, rank 6 models are not disfavoured with respect to rank 5. By
requiring the number of light neutral states to be minimal, these models have
an almost unique pattern of neutrino masses and mixings. We construct a model
based on the unconventional assignment scenario in which (with a natural choice
of the parameters) m_{\nut}\sim O(10)eV is generated at one loop, m_{\num}
is generated at two loops and lies in a range interesting for the solar
neutrino problem, and \nue remains massless. In addition, since baryon and
lepton number are conserved, there is no proton decay in the model. To
illustrate the non-standard phenomenology implied by our scheme we also discuss
a second scenario in which an attempt for solving the solar neutrino puzzle
with matter enhanced oscillations and practically massless neutrinos can be
formulated, and in which peculiar effects for the \num --> \nut conversion
of the upward-going atmospheric neutrinos could arise as well.Comment: Plain Tex, 33 pages, 3 PostScript figures (uses epsf.tex). Modified
file-format. No changes in the tex
Lepton Flavor Violation at the LHC
Recent results from Super Kamiokande suggest mixing and
hence lepton flavor violation. In supersymmetric models, this flavor violation
may have implications for the pattern of slepton masses and mixings. Possible
signals for this mixing in the decays of sleptons produced at the LHC are
discussed. The sensitivity expected is compared to that of rare decays such as
.Comment: 14 pages, 9 figure
The renewable energy and energy efficiency potential of Waitakere City : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Technology in Energy Management at Massey University
Electricity restrictions and blackouts have occurred in Waitakere City in the past and are likely to occur again in the future unless the city can become more self reliant by meeting, at least in part, the increasing energy requirements for what is one of the fastest growing cities in New Zealand. In this study the potentials for energy conservation, energy efficiency and renewable energy resources have been broadly quantified and assessed using desktop analysis of publicly available data for stationary final use energy systems (i.e. excluding transportation) within the geographical area of Waitakere City and adjoining waters.
It was found that energy efficiency and energy conservation measures can consistently and predictably achieve overall energy savings and reduce daily and seasonal peak demand.
The best renewable energy resource potential exists with solar and geothermal for heating applications and wave, offshore and inshore wind and tidal currents for electricity generation. There is very limited potential for hydro and bioenergy systems beyond what already exists. PV solar and land based wind power generation are currently only feasible for limited off-grid applications.
This scoping study confirms the achievability of the vision expressed in Waitakere City Council's "Long Term Council Community Plan" (LTCCP) that by 2020 " Waitakere City will be an energy cell, not an energy sink. Air quality supports good health". A range of flagship projects have been identified to progress the achievement of this vision. Waitakere City Council can use this report as part of the development of a comprehensive energy management plan
Physics at a Neutrino Factory
In response to the growing interest in building a Neutrino Factory to produce
high intensity beams of electron- and muon-neutrinos and antineutrinos, in
October 1999 the Fermilab Directorate initiated two six-month studies. The
first study, organized by N. Holtkamp and D. Finley, was to investigate the
technical feasibility of an intense neutrino source based on a muon storage
ring. This design study has produced a report in which the basic conclusion is
that a Neutrino Factory is technically feasible, although it requires an
aggressive R&D program. The second study, which is the subject of this report,
was to explore the physics potential of a Neutrino Factory as a function of the
muon beam energy and intensity, and for oscillation physics, the potential as a
function of baseline.Comment: 133 pages, 64 figures. Report to the Fermilab Directorate. Available
from http://www.fnal.gov/projects/muon_collider/ This version fixes some
printing problem
Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency
To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35°C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.
Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1µm.
The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.
Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0°C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats
Dispersive Manipulation of Paired Superconducting Qubits
We combine the ideas of qubit encoding and dispersive dynamics to enable
robust and easy quantum information processing (QIP) on paired superconducting
charge boxes sharing a common bias lead. We establish a decoherence free
subspace on these and introduce universal gates by dispersive interaction with
a LC resonator and inductive couplings between the encoded qubits. These gates
preserve the code space and only require the established local symmetry and the
control of the voltage bias.Comment: 5 pages, incl. 1 figur
High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs
Observations suggest that -ray bursts (GRBs) are produced by the
dissipation of the kinetic energy of a relativistic fireball. We show that a
large fraction, , of the fireball energy is expected to be converted
by photo-meson production to a burst of neutrinos. A km^2
neutrino detector would observe at least several tens of events per year
correlated with GRBs, and test for neutrino properties (e.g. flavor
oscillations, for which upward moving 's would be a unique signature, and
coupling to gravity) with an accuracy many orders of magnitude better than is
currently possible.Comment: Submitted to PRL (4 pages, LaTeX
- …
