42 research outputs found
Interaction between protokimberlite melts and mantle lithosphere: evidence from mantle xenoliths from the Dalnyaya kimberlite pipe, Yakutia (Russia)
The Dalnyaya kimberlite pipe (Yakutia, Russia) contains mantle peridotite xenoliths (mostly lherzolites and harzburgites) that show both sheared porphyroclastic (deformed) and coarse granular textures, together with ilmenite and clinopyroxene megacrysts. Deformed peridotites contain high-temperature Fe-rich clinopyroxenes, sometimes associated with picroilmenites, which are products of interaction of the lithospheric mantle with protokimberlite related melts. The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe. Coarse granular xenoliths fall on a geotherm of 35 mWm-2 whereas deformed varieties yield a 45 mWm-2 geotherm in the 2–7.5 GPa pressure interval. The chemistry of the constituent minerals including garnet, olivine and clinopyroxene shows trends of increasing Fe# (= Fe/(Fe+Mg) with decreasing pressure. This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels. Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals, determined by LA-ICP-MS. Orthopyroxenes, some clinopyroxenes and rare garnets are depleted in Ba, Sr, HFSE and MREE and represent relic lithospheric mantle. Re-fertilized garnet and clinopyroxene are more enriched. The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene. Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets. Olivines show decreases in Ni and increases in Al, Ca and Ti from Mg-rich varieties to the more Fe-rich, deformed and refertilized ones. Minerals showing higher Fe# (0.11–0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels. In P-f(O2) diagrams, garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at -5 log units below a FMQ buffer. However, Cr-poor clinopyroxenes, together with ilmenite and some Fe-Ca-rich garnets, demonstrate a more oxidized trend in the lower part of lithosphere at -2 to 0 log units relative to FMQ. Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite. The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts, which is greater at the base of the lithosphere
Multidisciplinary approach to diagnosis and management of osteosarcoma – a review of the St Vincent's Hospital experience
BACKGROUND: Osteosarcoma is the most common primary malignant bone tumour in children and young adults. Despite advances in the diagnosis and management of osteosarcoma, there have been few recent studies describing the experiences of tertiary referral centres. This paper aims to describe and discuss the clinical features, pre-operative work-up, management and outcomes of these patients at St Vincent's Hospital (Melbourne, Australia). METHODS: Retrospective study of fifty-nine consecutive patients managed for osteosarcoma at St Vincent's Hospital between 1995 and 2005. RESULTS: Median age at diagnosis was 21 (range, 11–84) years. Gender distribution was similar, with thirty-one male and twenty-eight female patients. Twenty-five patients had osteosarcoma in the femur, eleven each were located in the humerus and tibia, six were identified in the pelvis, and one each in the clavicle, maxilla, fibula, sacrum, ulna and radius. Pre-operative tissue diagnosis of osteosarcoma was obtained through computed tomography-guided percutaneous biopsy in over ninety percent of patients. Following initial therapy, over fifty percent of patients remained relapse-free during the follow-up period, with twelve percent and twenty-seven percent of patients documented as having local and distant disease recurrence, respectively. Of patients with recurrent disease, sixty-two percent remained disease-free following subsequent surgical intervention (most commonly, pulmonary metastatectomy). CONCLUSION: Patient outcomes can be optimised through a multidisciplinary approach in a tertiary referral centre. At St Vincent's Hospital, survival and relapse rates of patients managed for osteosarcoma compare favourably with the published literature
State of the climate in 2017
In 2017, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-reached new record highs. The annual global average carbon dioxide concentration at Earth's surface for 2017 was 405.0 ± 0.1 ppm, 2.2 ppm greater than for 2016 and the highest in the modern atmospheric measurement record and in ice core records dating back as far as 800 000 years. The global growth rate of CO2 has nearly quadrupled since the early 1960s. With ENSO-neutral conditions present in the central and eastern equatorial Pacific Ocean during most of the year and weak La Niña conditions notable at the start and end, the global temperature across land and ocean surfaces ranked as the second or third highest, depending on the dataset, since records began in the mid-to-late 1800s. Notably, it was the warmest non-El Niño year in the instrumental record. Above Earth's surface, the annual lower tropospheric temperature was also either second or third highest according to all datasets analyzed. The lower stratospheric temperature was about 0.2°C higher than the record cold temperature of 2016 according to most of the in situ and satellite datasets. Several countries, including Argentina, Uruguay, Spain, and Bulgaria, reported record high annual temperatures. Mexico broke its annual record for the fourth consecutive year. On 27 January, the temperature reached 43.4°C at Puerto Madryn, Argentina-the highest temperature recorded so far south (43°S) anywhere in the world. On 28 May in Turbat, western Pakistan, the high of 53.5°C tied Pakistan's all-time highest temperature and became the world-record highest temperature for May. In the Arctic, the 2017 land surface temperature was 1.6°C above the 1981-2010 average, the second highest since the record began in 1900, behind only 2016. The five highest annual Arctic temperatures have all occurred since 2007. Exceptionally high temperatures were observed in the permafrost across the Arctic, with record values reported in much of Alaska and northwestern Canada. In August, high sea surface temperature (SST) records were broken for the Chukchi Sea, with some regions as warm as +11°C, or 3° to 4°C warmer than the longterm mean (1982-present). According to paleoclimate studies, today's abnormally warm Arctic air and SSTs have not been observed in the last 2000 years. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 7 March, sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, covering 8% less area than the 1981-2010 average. The Arctic sea ice minimum on 13 September was the eighth lowest on record and covered 25% less area than the long-term mean. Preliminary data indicate that glaciers across the world lost mass for the 38th consecutive year on record; the declines are remarkably consistent from region to region. Cumulatively since 1980, this loss is equivalent to slicing 22 meters off the top of the average glacier. Antarctic sea ice extent remained below average for all of 2017, with record lows during the first four months. Over the continent, the austral summer seasonal melt extent and melt index were the second highest since 2005, mostly due to strong positive anomalies of air temperature over most of the West Antarctic coast. In contrast, the East Antarctic Plateau saw record low mean temperatures in March. The year was also distinguished by the second smallest Antarctic ozone hole observed since 1988. Across the global oceans, the overall long-term SST warming trend remained strong. Although SST cooled slightly from 2016 to 2017, the last three years produced the three highest annual values observed; these high anomalies have been associated with widespread coral bleaching. The most recent global coral bleaching lasted three full years, June 2014 to May 2017, and was the longest, most widespread, and almost certainly most destructive such event on record. Global integrals of 0-700-m and 0-2000-m ocean heat content reached record highs in 2017, and global mean sea level during the year became the highest annual average in the 25-year satellite altimetry record, rising to 77 mm above the 1993 average. In the tropics, 2017 saw 85 named tropical storms, slightly above the 1981-2010 average of 82. The North Atlantic basin was the only basin that featured an above-normal season, its seventh most active in the 164-year record. Three hurricanes in the basin were especially notable. Harvey produced record rainfall totals in areas of Texas and Louisiana, including a storm total of 1538.7 mm near Beaumont, Texas, which far exceeds the previous known U.S. tropical cyclone record of 1320.8 mm. Irma was the strongest tropical cyclone globally in 2017 and the strongest Atlantic hurricane outside of the Gulf of Mexico and Caribbean on record with maximum winds of 295 km h-1. Maria caused catastrophic destruction across the Caribbean Islands, including devastating wind damage and flooding across Puerto Rico. Elsewhere, the western North Pacific, South Indian, and Australian basins were all particularly quiet. Precipitation over global land areas in 2017 was clearly above the long-term average. Among noteworthy regional precipitation records in 2017, Russia reported its second wettest year on record (after 2013) and Norway experienced its sixth wettest year since records began in 1900. Across India, heavy rain and flood-related incidents during the monsoon season claimed around 800 lives. In August and September, above-normal precipitation triggered the most devastating floods in more than a decade in the Venezuelan states of Bolívar and Delta Amacuro. In Nigeria, heavy rain during August and September caused the Niger and Benue Rivers to overflow, bringing floods that displaced more than 100 000 people. Global fire activity was the lowest since at least 2003; however, high activity occurred in parts of North America, South America, and Europe, with an unusually long season in Spain and Portugal, which had their second and third driest years on record, respectively. Devastating fires impacted British Columbia, destroying 1.2 million hectares of timber, bush, and grassland, due in part to the region's driest summer on record. In the United States, an extreme western wildfire season burned over 4 million hectares; the total costs of $18 billion tripled the previous U.S. annual wildfire cost record set in 1991
Fifty years of rhabdomyosarcoma studies on both sides of the pond and lessons learned
We review and summarize the highlights of almost five decades of cooperative group trials in rhabdomyosarcoma on both sides of the Atlantic, concentrating on chemotherapy regimens, what has been learned, and where remaining challenges are. The most important achievements have been to decrease or omit the dose of alkylator therapy for many patients, to clarify after much controversy that doxorubicin does not improve the outcome of patients even in the highest risk groups, and to show that high dose chemotherapy and stem cell rescue do not improve the outcome of the highest risk patients. In North America, vincristine/actinomycin/cyclophosphamide (VAC) remains an important part of therapy, whereas in Europe the alkylating agent of choice is ifosfamide. The highest risk patients, namely those with the poorest prognostic score, have had no improvement in outcome since the first cooperative group trial in 1972 and remain the greatest challenge. Philosophical differences between European and North American strategies still revolve somewhat around the total burden of therapy received, that is should certain groups of patients be spared aggressive local control in order to reduce late effects, recognizing that it is not possible to identify priori the children that can be cured with this approach exposing the whole population to a higher risk of relapse. Collaboration and joining resources may help answer some difficult questions
Standardisation and use of the alcohol biomarker carbohydrate-deficient transferrin (CDT)
Carbohydrate-deficient transferrin (CDT) is a glycoform profile of serum transferrin that increases in response to sustained high alcohol intake and over the last decades has become an important alcohol biomarker with clinical and forensic applications. However, the wide range of CDT measurement procedures has resulted in lack of uniform results and reference limits, and hampered comparison of results. In 2005, the IFCC therefore founded a special working group (WG) aiming for standardisation of CDT measurement. This review summarises the history of CDT and the actions taken by the WG-CDT. Initial steps included the definition of the measurand (serum disialotransferrin to total transferrin fraction expressed in %), and the determination of a well-defined anion-exchange HPLC procedure as the candidate reference measurement procedure (cRMP). Subsequent achievements were the establishment of a network of reference laboratories to perform the cRMP, setting a reference interval, and development of a reference material based on human serum for which the laboratory network assign values. Using a set of reference materials for calibration allowed for achieving equivalence of results of all present CDT measurement procedures. The final steps of the WG-CDT have been a full validation of the cRMP to make it an IFCC approved RMP, and providing guidance for international standardisation of all CDT measurement procedures
Komatiitic Sills and Multigenerational Peperite at Dundonald Beach, Abitibi Greenstone Belt, Ontario: Volcanic Architecture and Nickel Sulfide Distribution
International audienceThe density and the tectonic stresses in the deep crust and the physical properties of komatiitic magmas determine the level to which they will rise, but once in the near-surface environment, the density and rheology of the near-surface rocks (consolidated and dense lava flows and sedimentary rocks versus unconsolidated sedimentary or volcaniclastic deposits) govern whether they will be emplaced as lava flows, invasive flows, or sills. Where near-surface strata are competent (i.e., flow-dominated or consolidated sedimentary and/or volcaniclastic successions), komatiitic magma erupts as flows that form extensive lava shields (e.g., Kambalda). However, where near-surface strata are not competent (i.e., unconsolidated volcaniclastic- and/or sediment-dominated successions), komatiitic magmas typically are emplaced as high-level sills that increase the bulk density of the volcano-sedimentary pile and eventually allow the eruption of lava and the construction of complex sub-volcanic-volcanic lava shields (e.g., Dundonald and Shaw dome, Abitibi belt; Raglan, Cape Smith belt; Pechenga, Kola Peninsula; Thompson Ni belt, Manitoba). The latter environment is illustrated in the volcano-sedimentary succession in Dundonald Township, which is only weakly metamorphosed and deformed and superbly exposed in glacially polished outcrops. The volcano-sedimentary succession in this area comprises (from base to top) (1) the McIntosh formation, composed of a succession of pillowed and massive intermediate volcanic flows; (2) the Dundonald formation, composed of a lower section of komatiite sills, argillites, and felsic volcaniclastic deposits and an upper section of komatiite flows, komatiitic sills, and pillowed intermediate volcanic flows; and (3) the Frederick House Lake formation, composed of massive and pillowed mafic flows. The distribution and thickness of argillites and felsic volcaniclastic rocks define a synvolcanic graben in which the Dundonald South and Alexo Ni-Cu-(PGE) deposits occur within the center and the margin, respectively. Sills and peperites in the lower komatiitic succession at Dundonald Beach exhibit a multigenerational emplacement history recording progressive lithification and increases in the bulk density and rheological strength of the unconsolidated argillites, which ultimately permitted the eruption of lavas at Alexo. Importantly, the nature of the near-surface rocks also influences the localization of Ni-Cu-(PGE) deposits. In lava shields (e.g., Kambalda), the initial eruptions are typically most voluminous and, if erupted at sufficient flow rates, form channelized flows conducive to thermomechanical erosion of sulfur-rich footwall rocks. In sub-volcanic-volcanic lava shields, however, channelized units may occur within the subvolcanic plumbing system and/or within overlying lavas. Where only sills are channelized (e.g., Thompson), mineralization will occur only within the subvolcanic environment; where only the flows are channelized (e.g., Damba-Silwane, Zimbabwe), mineralization will occur only within the volcanic environment. Where both sills and lava flows are channelized (e.g., Dundonald, Shaw dome, Raglan), the distribution of the mineralization is more diverse and may occur as subsea- or sea-floor Ni-Cu-(PGE) deposits
