14,390 research outputs found

    A geometrical non-linear model for cable systems analysis

    Get PDF
    Cable structures are commonly studied with simplified analytical equations. The evaluation of the accuracy of these equations, in terms of equilibrium geometry configuration and stress distribution was performed for standard cables examples. A three-dimensional finite element analysis (hereafter FEA) procedure based on geometry-dependent stiffness coefficients was developed. The FEA follows a classical procedure in finite element programs, which uses an iterative algorithm, in terms of displacements. The theory is based on a total Lagrange formulation using Green-Lagrange strain. Pure Newton-Raphson procedure was employed to solve the non-linear equations. The results show that the rigid character of the catenary’s analytical equation, introduce errors when compared with the FEA

    Spin-dependent Fano resonance induced by conducting chiral helimagnet contained in a quasi-one-dimensional electron waveguide

    Full text link
    Fano resonance appears for conduction through an electron waveguide containing donor impurities. In this work, we consider the thin-film conducting chiral helimagnet (CCH) as the donor impurity in a one-dimensional waveguide model. Due to the spin spiral coupling, interference between the direct and intersubband transmission channels gives rise to spin-dependent Fano resonance effect. The spin-dependent Fano resonance is sensitively dependent on the helicity of the spiral. By tuning the CCH potential well depth and the incident energy, this provides a potential way to detect the spin structure in the CCH.Comment: 14 pages, 6 figure

    On Quantum Special Kaehler Geometry

    Full text link
    We compute the effective black hole potential V of the most general N=2, d=4 (local) special Kaehler geometry with quantum perturbative corrections, consistent with axion-shift Peccei-Quinn symmetry and with cubic leading order behavior. We determine the charge configurations supporting axion-free attractors, and explain the differences among various configurations in relations to the presence of ``flat'' directions of V at its critical points. Furthermore, we elucidate the role of the sectional curvature at the non-supersymmetric critical points of V, and compute the Riemann tensor (and related quantities), as well as the so-called E-tensor. The latter expresses the non-symmetricity of the considered quantum perturbative special Kaehler geometry.Comment: 1+43 pages; v2: typo corrected in the curvature of Jordan symmetric sequence at page 2

    Gravitational Larmor formula in higher dimensions

    Get PDF
    The Larmor formula for scalar and gravitational radiation from a pointlike particle is derived in any even higher-dimensional flat spacetime. General expressions for the field in the wave zone and the energy flux are obtained in closed form. The explicit results in four and six dimensions are used to illustrate the effect of extra dimensions on linear and uniform circular motion. Prospects for detection of bulk gravitational radiation are briefly discussed.Comment: 5 pages, no figure

    Bent-Double Radio Sources as Probes of Intergalactic Gas

    Full text link
    As the most common environment in the universe, groups of galaxies are likely to contain a significant fraction of the missing baryons in the form of intergalactic gas. The density of this gas is an important factor in whether ram pressure stripping and strangulation affect the evolution of galaxies in these systems. We present a method for measuring the density of intergalactic gas using bent-double radio sources that is independent of temperature, making it complementary to current absorption line measurements. We use this method to probe intergalactic gas in two different environments: inside a small group of galaxies as well as outside of a larger group at a 2 Mpc radius and measure total gas densities of 4±12+6×1034 \pm 1_{-2}^{+6} \times 10^{-3} and 9±35+10×1049 \pm 3_{-5}^{+10} \times 10^{-4} per cubic centimeter (random and systematic errors) respectively. We use X-ray data to place an upper limit of 2×1062 \times 10^6 K on the temperature of the intragroup gas in the small group.Comment: 6 pages, 1 figure, accepted for publication in Ap

    A Complex Case of Cholestasis in a Patient with ABCB4 and ABCB11 Mutations

    Get PDF
    The low-phospholipid-associated cholelithiasis (LPAC) syndrome is a form of symptomatic cholelithiasis occurring in young adults, characterized by recurrence of symptoms after cholecystectomy and presence of hepatolithiasis. The case refers to a healthy 39-year-old Caucasian male who presented with abdominal pain and jaundice. His blood tests showed conjugated hyperbilirubinemia and elevated liver enzymes (total bilirubin 6.65 mg/dL, γ-glutamyltransferase 699 IU/L) and abdominal computed tomography revealed dilation of common bile duct and left intrahepatic ducts. Magnetic resonance cholangiopancreatography identified choledocholithiasis, retrieved by endoscopic retrograde cholangiopancreatography, after which there was a worsening of jaundice (total bilirubin 23 mg/dL), which persisted for several weeks, possibly due to ciprofloxacin toxicity. After an extensive workup including liver biopsy, the identification of two foci of hepatolithiasis on reevaluation abdominal ultrasound raised the hypothesis of LPAC syndrome and the patient was started on ursodeoxycholic acid, with remarkable improvement. Genetic testing identified the mutation c.1954A>G (p.Arg652Gly) in ABCB4 gene (homozygous) and c.1331T>C (p.Val444Ala) in ABCB11 gene (heterozygous). In conclusion, we describe the unique case of an adult male with choledocholithiasis, hepatolithiasis, and persistent conjugated hyperbilirubinemia after retrieval of stones, fulfilling the criteria for LPAC syndrome and with possible superimposed drug-induced liver injury, in whom ABCB4 and ABCB11 mutations were found, both of which had not been previously described in association with LPAC.info:eu-repo/semantics/publishedVersio

    Plasmarings as dual black rings

    Full text link
    We construct solutions to the relativistic Navier-Stokes equations that describe the long wavelength collective dynamics of the deconfined plasma phase of N=4 Yang Mills theory compactified down to d=3 on a Scherk-Schwarz circle and higher dimensional generalisations. Our solutions are stationary, axially symmetric spinning balls and rings of plasma. These solutions, which are dual to (yet to be constructed) rotating black holes and black rings in Scherk-Schwarz compactified AdS(5) and AdS(6), and have properties that are qualitatively similar to those of black holes and black rings in flat five dimensional supergravity.Comment: 40 pages, 40 figures. (v2) Correction to black brane equation of state, additional reference

    Partition functions and elliptic genera from supergravity

    Full text link
    We develop the spacetime aspects of the computation of partition functions for string/M-theory on AdS(3) xM. Subleading corrections to the semi-classical result are included systematically, laying the groundwork for comparison with CFT partition functions via the AdS(3)/CFT(2) correspondence. This leads to a better understanding of the "Farey tail" expansion of Dijkgraaf et. al. from the point of view of bulk physics. Besides clarifying various issues, we also extend the analysis to the N=2 setting with higher derivative effects included.Comment: 34 page

    On computing real logarithms for matrices in the Lie group of special Euclidean motions in Rn

    Get PDF
    We show that the diagonal Pade approximants methods, both for computing the principal logarithm of matrices belonging to the Lie groupSE (n, IR) of special Euclidean motions in IRn and to compute the matrix exponential of elements in the corresponding Lie algebra se(n, IR), are structure preserving. Also, for the particular cases when n == 2,3 we present an alternative closed form to compute the principal logarithm. These low dimensional Lie groups play an important role in the kinematic motion of many mechanical systems and, for that reason, the results presented here have immediate applications in robotic
    corecore