3,575 research outputs found

    Jet Deflection via Cross winds: Laboratory Astrophysical Studies

    Full text link
    We present new data from High Energy Density (HED) laboratory experiments designed to explore the interaction of a heavy hypersonic radiative jet with a cross wind. The jets are generated with the MAGPIE pulsed power machine where converging conical plasma flows are produced from a cylindrically symmetric array of inclined wires. Radiative hypersonic jets emerge from the convergence point. The cross wind is generated by ablation of a plastic foil via soft-X-rays from the plasma convergence region. Our experiments show that the jets are deflected by the action of the cross wind with the angle of deflection dependent on the proximity of the foil. Shocks within the jet beam are apparent in the data. Analysis of the data shows that the interaction of the jet and cross wind is collisional and therefore in the hydro-dynamic regime. MHD plasma code simulations of the experiments are able to recover the deflection behaviour seen in the experiments. We consider the astrophysical relevance of these experiments applying published models of jet deflection developed for AGN and YSOs. Fitting the observed jet deflections to quadratic trajectories predicted by these models allows us to recover a set of plasma parameters consistent with the data. We also present results of 3-D numerical simulations of jet deflection using a new astrophysical Adaptive Mesh Refinement code. These simulations show highly structured shocks occurring within the beam similar to what was observed in the experimentsComment: Submitted to ApJ. For a version with figures go to http://web.pas.rochester.edu/~afrank/labastro/CW/Jet-Wind-Frank.pd

    Hydrodynamical Models of Outflow Collimation in YSOs

    Full text link
    We explore the physics of time-dependent hydrodynamic collimation of jets from Young Stellar Objects (YSOs). Using parameters appropriate to YSOs we have carried out high resolution hydrodynamic simulations modeling the interaction of a central wind with an environment characterized by a moderate opening angle toroidal density distribution. The results show that the the wind/environment interaction produces strongly collimated supersonic jets. The jet is composed of shocked wind gas. Using analytical models of wind blown bubble evolution we show that the scenario studied here should be applicable to YSOs and can, in principle, initiate collimation on the correct scales (R ~ 100 AU). The simulations reveal a number of time-dependent non-linear features not anticipated in previous analytical studies including: a prolate wind shock; a chimney of cold swept-up ambient material dragged into the bubble cavity; a plug of dense material between the jet and bow shocks. We find that the collimation of the jet occurs through both de Laval nozzles and focusing of the wind via the prolate wind shock. Using an analytical model for shock focusing we demonstrate that a prolate wind shock can, by itself, produce highly collimated supersonic jets.Comment: Accepted by ApJ, 31 pages with 12 figures (3 JPEG's) now included, using aasms.sty, Also available in postscript via a gzipped tar file at ftp://s1.msi.umn.edu/pub/afrank/SFIC1/SFIC.tar.g

    The effect of a stellar magnetic variation on the jet velocity

    Full text link
    Stellar jets are normally constituted by chains of knots with some periodicity in their spatial distribution, corresponding to a variability of order of several years in the ejection from the protostar/disk system. A widely accepted theory for the presence of knots is related to the generation of internal working surfaces due to variations in the jet ejection velocity. In this paper we study the effect of variations in the inner disk-wind radius on the jet ejection velocity. We show that a small variation in the inner disk-wind radius produce a variation in the jet velocity large enough to generate the observed knots. We also show that the variation in the inner radius may be related to a variation of the stellar magnetic field.Comment: 5 pages, 3 figures, accepted for publication in Ap

    The variability behavior of CoRoT M-giant Stars

    Full text link
    For 6 years the Convection, Rotation, and Planetary Transits (CoRoT) space mission has acquired photometric data from more than one hundred thousand point sources towards and directly opposite from the inner and outer regions of the Galaxy. The high temporal resolution of the CoRoT data combined with the wide time span of the observations has enabled the study of short and long time variations in unprecedented detail. From the initial sample of 2534 stars classified as M-giants in the CoRoT databasis, we selected 1428 targets that exhibit well defined variability, using visual inspection. The variability period and amplitude of C1 stars (stars having Teff < 4200 K) were computed using Lomb-Scargle and harmonic fit methods. The trends found in the V-I vs J-K color-color diagram are in agreement with standard empirical calibrations for M-giants. The sources located towards the inner regions of the Galaxy are distributed throughout the diagram while the majority of the stars towards the outer regions of the Galaxy are spread between the calibrations of M-giants and the predicted position for Carbon stars. The stars classified as supergiants follow a different sequence from the one found for giant stars. We also performed a KS test of the period and amplitude of stars towards the inner and outer regions of the Galaxy. We obtained a low probability that the two samples come from the same parent distribution. The observed behavior of the period-amplitude and period-Teff diagrams are, in general, in agreement with those found for Kepler sources and ground based photometry, with pulsation being the dominant cause responsible for the observed modulation. We also conclude that short-time variations on M-Giant stars do not exist orare very rare and the few cases we found are possibly related to biases or background stars.Comment: 11 pages, 6 figure

    An efficient ‘a priori’ model reduction for boundary element models

    Get PDF
    The Boundary Element Method (BEM) is a discretisation technique for solving partial differential equations, which offers, for certain problems, important advantages over domain techniques. Despite the high CPU time reduction that can be achieved, some 3D problems remain today untreatable because the extremely large number of degrees of freedom—dof—involved in the boundary description. Model reduction seems to be an appealing choice for both, accurate and efficient numerical simulations. However, in the BEM the reduction in the number of degrees of freedom does not imply a significant reduction in the CPU time, because in this technique the more important part of the computing time is spent in the construction of the discrete system of equations. In this way, a reduction also in the number of weighting functions, seems to be a key point to render efficient boundary element simulations

    Effect of ammonia load on efficiency of nitrogen removal in an SBBR with liquid-phase circulation

    Get PDF
    The removal of biological nitrogen from a synthetic wastewater with different ammonium nitrogen concentrations (50 and 100 mgN-NH4+/L) by a nitrification and denitrification process using a sequencing batch biofilm reactor (SBBR) with liquid-phase circulation was studied. The system with a total working volume of 4.6 L (3.7 L in the reactor and 0.9 L in the reservoir) treated 2.1 L of synthetic wastewater in 12-h cycles. As inoculum two types of biomass were used: an anaerobic/anoxic one from an up-flow anaerobic sludge blanket reactor (UASB) and an aerobic one from a prolonged aeration activated sludge system. The system, maintained at 30 ± 1 ÂșC, operated in batch mode followed by fed-batch mode and was aerated intermittently. During fed-batch operation the reactor was fed with an external carbon source as electron donor in the denitrifying step and with no aeration. When the reactor was fed with 50 mgN-NH4+/L, efficiencies of removal of ammonium nitrogen and total nitrogen from the effluent were 93.8 and 72.2%, respectively, and nitrite, nitrate and organic nitrogen concentrations were 0.07, 6.4 and 0.5 mg/L, respectively. On the other hand, when the influent ammonium nitrogen concentration was 100 mgN-NH4+/L, residual nitrite and nitrate were 0.17 and 20.4, respectively, and no N-Org was found in the effluent. It should be mentioned that residual nitrate remained unaltered at the different C/N ratios used. Consequently, efficiency of total nitrogen removal was reduced to 66.7%, despite efficiency of ammonium nitrogen removal exceeding 90%. These results show the potential of the proposed system in removing ammonium nitrogen from liquid effluents with a moderate ammonium nitrogen concentration.Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP

    Accretion Disks Around Young Objects. II. Tests of Well-Mixed Models with Ism Dust

    Get PDF
    We construct detailed vertical structure models of irradiated accretion disks around T Tauri stars with interstellar medium dust uniformly mixed with gas. The dependence of the structure and emission properties on mass accretion rate, viscosity parameter, and disk radius is explored using these models. The theoretical spectral energy distributions (SEDs) and images for all inclinations are compared with observations of the entire population of Classical T Tauri stars (CTTS) and Class I objects in Taurus. In particular, we find that the median near-infrared fluxes can be explained within the errors with the most recent values for the median accretion rates for CTTS. We further show that the majority of the Class I sources in Taurus cannot be Class II sources viewed edge-on because they are too luminous and their colors would be consistent with disks seen only in a narrow range of inclinations. Our models appear to be too geometrically thick at large radii, as suggested by: (a) larger far-infrared disk emission than in the typical SEDs of T Tauri stars; (b) wider dark dust lanes in the model images than in the images of HH30 and HK Tau/c; and (c) larger predicted number of stars extincted by edge-on disks than consistent with current surveys. The large thickness of the model is a consequence of the assumption that dust and gas are well-mixed, suggesting that some degree of dust settling may be required to explain the observations.Comment: 41 pages, 13 figures, accepted in Ap

    Accretion Disks around Young Objects. I. The Detailed Vertical Structure

    Get PDF
    We discuss the properties of an accretion disk around a star with parameters typical of classical T Tauri stars (CTTS), and with the average accretion rate for these disks. The disk is assumed steady and geometrically thin. The turbulent viscosity coefficient is expressed using the alpha prescription and the main heating mechanisms considered are viscous dissipation and irradiation by the central star. The energy is transported by radiation, turbulent conduction and convection. We find that irradiation from the central star is the main heating agent of the disk, except in the innermost regions, R less than 2 AU. The irradiation increases the temperature of the outer disk relative to the purely viscous case. As a consequence, the outer disk (R larger than 5 AU) becomes less dense, optically thin and almost vertically isothermal, with a temperature distribution T proportional to R^{-1/2}. The decrease in surface density at the outer disk, decreases the disk mass by a factor of 4 respect to a purely viscous case. In addition, irradiation tends to make the outer disk regions stable against gravitational instabilities.Comment: 41 pages, 14 postscript figures, LaTeX, accepted by Ap
    • 

    corecore