491 research outputs found
Pilot study into milk haptoglobin as an indicator of udder health in heifers after calving
Mastitis, inflammation of the mammary gland, is often caused by intramammary infection with bacterial organisms. It impacts on dairy cattle welfare, production, udder health and longevity in the herd. Current detection methods for mammary inflammation and infection all have limitations, particularly for on-farm diagnosis of non-clinical mastitis after calving. Acute phase proteins have been suggested as alternative early indicators of the disease and can potentially be used as cow-side test with results in real time. In this study, milk haptoglobin concentrations were investigated over the first week postpartum to explore haptoglobin's potential as indicator of udder health in dairy heifers. Haptoglobin concentration was highest on day 3 of lactation, and was positively correlated with somatic cell count, a commonly used marker of inflammation (rs=0.68). Haptoglobin level was also associated with bacteriological culture results, a key indicator of infection status, whereby median haptoglobin concentration on days 3 and 5 was higher in quarters that were infected at calving than quarters that were non infected at calving. Sensitivity and specificity of haptoglobin concentration as indicator of infection were low, both for lenient and strict culture-based definitions of intramammary infection (57 or 60% and 61 or 63%, respectively). Although haptoglobin was a poor biomarker for intramammary infection with coagulase negative staphylococci in heifers during the first week after calving, it may have value as an indicator of major pathogen infections, particularly in large scale dairy herds where pre-partum heifers are managed off-site
Variety and Volatility in Financial Markets
We study the price dynamics of stocks traded in a financial market by
considering the statistical properties both of a single time series and of an
ensemble of stocks traded simultaneously. We use the stocks traded in the
New York Stock Exchange to form a statistical ensemble of daily stock returns.
For each trading day of our database, we study the ensemble return
distribution. We find that a typical ensemble return distribution exists in
most of the trading days with the exception of crash and rally days and of the
days subsequent to these extreme events. We analyze each ensemble return
distribution by extracting its first two central moments. We observe that these
moments are fluctuating in time and are stochastic processes themselves. We
characterize the statistical properties of ensemble return distribution central
moments by investigating their probability density functions and temporal
correlation properties. In general, time-averaged and portfolio-averaged price
returns have different statistical properties. We infer from these differences
information about the relative strength of correlation between stocks and
between different trading days. Lastly, we compare our empirical results with
those predicted by the single-index model and we conclude that this simple
model is unable to explain the statistical properties of the second moment of
the ensemble return distribution.Comment: 10 pages, 11 figure
Baryogenesis via lepton number violating scalar interactions
We study baryogenesis through lepton number violation in left-right symmetric
models. In these models the lepton number and CP violating interactions of the
triplet higgs scalars can give rise to lepton number asymmetry through
non-equilibrium decays of the triplet higgs and the right handed
neutrinos. This in turn generates baryon asymmetry during the electroweak
anomalous processes.Comment: 14 pages, UTPT-93-1
Critical exponents in Ising spin glasses
We determine accurate values of ordering temperatures and critical exponents
for Ising Spin Glass transitions in dimension 4, using a combination of finite
size scaling and non-equilibrium scaling techniques. We find that the exponents
and vary with the form of the interaction distribution, indicating
non-universality at Ising spin glass transitions. These results confirm
conclusions drawn from numerical data for dimension 3.Comment: 6 pages, RevTeX (or Latex, etc), 10 figures, Submitted to PR
Charge asymmetry ratio as a probe of quark flavour couplings of resonant particles at the LHC
We show how a precise knowledge of parton distribution functions, in
particular those of the u and d quarks, can be used to constrain a certain
class of New Physics models in which new heavy charged resonances couple to
quarks and leptons. We illustrate the method by considering a left-right
symmetric model with a W' from a SU(2)_R gauge sector produced in
quark-antiquark annihilation and decaying into a charged lepton and a heavy
Majorana neutrino. We discuss a number of quark and lepton mixing scenarios,
and simulate both signals and backgrounds in order to determine the size of the
expected charge asymmetry. We show that various quark-W' mixing scenarios can
indeed be constrained by charge asymmetry measurements at the LHC, particularly
at 14 TeV centre of mass energy.Comment: 14 pages, 3 figure
Uncertainties of the Inclusive Higgs Production Cross Section at the Tevatron and the LHC
We study uncertainties of the predicted inclusive Higgs production cross
section due to the uncertainties of parton distribution functions (PDF).
Particular attention is given to bbH Yukawa coupling enhanced production
mechanisms in beyond SM scenarios, such as MSSM. The PDF uncertainties are
determined by the robust Lagrange Multiplier method within the CTEQ global
analysis framework. We show that PDF uncertainties dominate over theoretical
uncertainties of the perturbative calculation (usually estimated by the scale
dependence of the calculated cross sections), except for low Higgs masses at
LHC. Thus for the proper interpretation of any Higgs signal, and for better
understanding of the underlying electroweak symmetry breaking mechanism, it is
important to gain better control of the uncertainties of the PDFs.Comment: LaTeX, JHEP, 19 pages, 14 figure
Jet angular correlation in vector-boson fusion processes at hadron colliders
Higgs boson and massive-graviton productions in association with two jets via
vector-boson fusion (VBF) processes and their decays into a vector-boson pair
at hadron colliders are studied. They include scalar and tensor boson
production processes via weak-boson fusion in quark-quark collisions, gluon
fusion in quark-quark, quark-gluon and gluon-gluon collisions, as well as their
decays into a pair of weak bosons or virtual gluons which subsequently decay
into , or . We give the helicity amplitudes
explicitly for all the VBF subprocesses, and show that the VBF amplitudes
dominate the exact matrix elements not only for the weak-boson fusion processes
but also for all the gluon fusion processes when appropriate selection cuts are
applied, such as a large rapidity separation between two jets and a slicing cut
for the transverse momenta of the jets. We also show that our off-shell
vector-boson current amplitudes reduce to the standard quark and gluon
splitting amplitudes with appropriate gluon-polarization phases in the
collinear limit. Nontrivial azimuthal angle correlations of the jets in the
production and in the decay of massive spin-0 and -2 bosons are manifestly
expressed as the quantum interference among different helicity states of the
intermediate vector-bosons. Those correlations reflect the spin and the CP
nature of the Higgs bosons and the massive gravitons.Comment: 47 pages, 7 figures, 10 tables; references added, version to appear
in JHE
SO(10) unified models and soft leptogenesis
Motivated by the fact that, in some realistic models combining SO(10) GUTs
and flavour symmetries, it is not possible to achieve the required baryon
asymmetry through the CP asymmetry generated in the decay of right-handed
neutrinos, we take a fresh look on how deep this connection is in SO(10). The
common characteristics of these models are that they use the see-saw with
right-handed neutrinos, predict a normal hierarchy of masses for the neutrinos
observed in oscillating experiments and in the basis where the right-handed
Majorana mass is diagonal, the charged lepton mixings are tiny.
In addition these models link the up-quark Yukawa matrix to the neutrino
Yukawa matrix Y^\nu with the special feature of Y^\nu_{11}-> 0 Using this
condition, we find that the required baryon asymmetry of the Universe can be
explained by the soft leptogenesis using the soft B parameter of the second
lightest right-handed neutrino whose mass turns out to be around 10^8 GeV. It
is pointed out that a natural way to do so is to use no-scale supergravity
where the value of B ~1 GeV is set through gauge-loop corrections.Comment: 26 pages, 2 figures. Added references, new appendix of a relevant fit
and improved comment
The Potts Fully Frustrated model: Thermodynamics, percolation and dynamics in 2 dimensions
We consider a Potts model diluted by fully frustrated Ising spins. The model
corresponds to a fully frustrated Potts model with variables having an integer
absolute value and a sign. This model presents precursor phenomena of a glass
transition in the high-temperature region. We show that the onset of these
phenomena can be related to a thermodynamic transition. Furthermore this
transition can be mapped onto a percolation transition. We numerically study
the phase diagram in 2 dimensions (2D) for this model with frustration and {\em
without} disorder and we compare it to the phase diagram of the model with
frustration {\em and} disorder and of the ferromagnetic model.
Introducing a parameter that connects the three models, we generalize the exact
expression of the ferromagnetic Potts transition temperature in 2D to the other
cases. Finally, we estimate the dynamic critical exponents related to the Potts
order parameter and to the energy.Comment: 10 pages, 10 figures, new result
- …