9 research outputs found

    Dual giant gravitons in AdSm_m ×\times Yn^n (Sasaki-Einstein)

    Full text link
    We consider BPS motion of dual giant gravitons on AdS5×Y5S_5\times Y^5 where Y5Y^5 represents a five-dimensional Sasaki-Einstein manifold. We find that the phase space for the BPS dual giant gravitons is symplectically isomorphic to the Calabi-Yau cone over Y5Y^5, with the K\"{a}hler form identified with the symplectic form. The quantization of the dual giants therefore coincides with the K\"{a}hler quantization of the cone which leads to an explicit correspondence between holomorphic wavefunctions of dual giants and gauge-invariant operators of the boundary theory. We extend the discussion to dual giants in AdS4×Y7AdS_4 \times Y^7 where Y7Y^7 is a seven-dimensional Sasaki-Einstein manifold; for special motions the phase space of the dual giants is symplectically isomorphic to the eight-dimensional Calabi-Yau cone.Comment: 14 pages. (v2) typo's corrected; factors of AdS radius reinstated for clarity; remarks about dual giant wavefunctions in T^{1,1} expanded and put in a new subsectio

    Counting 1/8-BPS Dual-Giants

    Get PDF
    We count 1/8-BPS states in type IIB string theory on AdS_5 x S^5 background which carry three independent angular momenta on S^5. These states can be counted by considering configurations of multiple dual-giant gravitons up to N in number which share at least four supersymmetries. We map this counting problem to that of counting the energy eigen states of a system of N bosons in a 3-dimensional harmonic oscillator. We also count 1/8-BPS states with two independent non-zero spins in AdS_5 and one non-zero angular momentum on S^5 by considering configurations of arbitrary number of giant gravitons that share at least four supersymmetries.Comment: 19 page

    Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution

    Full text link
    We compare and contrast the long-time dynamical properties of two individual-based models of biological coevolution. Selection occurs via multispecies, stochastic population dynamics with reproduction probabilities that depend nonlinearly on the population densities of all species resident in the community. New species are introduced through mutation. Both models are amenable to exact linear stability analysis, and we compare the analytic results with large-scale kinetic Monte Carlo simulations, obtaining the population size as a function of an average interspecies interaction strength. Over time, the models self-optimize through mutation and selection to approximately maximize a community fitness function, subject only to constraints internal to the particular model. If the interspecies interactions are randomly distributed on an interval including positive values, the system evolves toward self-sustaining, mutualistic communities. In contrast, for the predator-prey case the matrix of interactions is antisymmetric, and a nonzero population size must be sustained by an external resource. Time series of the diversity and population size for both models show approximate 1/f noise and power-law distributions for the lifetimes of communities and species. For the mutualistic model, these two lifetime distributions have the same exponent, while their exponents are different for the predator-prey model. The difference is probably due to greater resilience toward mass extinctions in the food-web like communities produced by the predator-prey model.Comment: 26 pages, 12 figures. Discussion of early-time dynamics added. J. Math. Biol., in pres

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore