355 research outputs found
Origin and evolutionary relationships of giant Galapagos tortoises
Perhaps the most enduring debate in reptile systematics has involved the giant Galapagos tortoises (Geochelone nigra), whose origins and systematic relationships captivated Charles Darwin and remain unresolved to this day. Here we report a phylogenetic reconstruction based on mitochondrial DNA sequences from Galapagos tortoises and Geochelone from mainland South America and Africa. The closest living relative to the Galapagos tortoise is not among the larger-bodied tortoises of South America but is the relatively small-bodied Geochelone chilensis, or Chaco tortoise. The split between G. chilensis and the Galapagos lineage probably occurred 6 to 12 million years ago, before the origin of the oldest extant Galapagos island. Our data suggest that the four named southern subspecies on the largest island, Isabela, are not distinct genetic units, whereas a genetically distinct northernmost Isabela subspecies is probably the result of a separate colonization. Most unexpectedly, the lone survivor of the abingdoni subspecies from Pinta Island ("Lonesome George") is very closely related to tortoises from San Cristobal and Espanola, the islands farthest from the island of Pinta, To rule out a possible recent transplant of Lonesome George, we sequenced DNA from three tortoises collected on Pinta in 1906, They have sequences identical to Lonesome George, consistent with his being the last survivor of his subspecies. This finding may provide guidance in finding a mate for Lonesome George, who so far has failed to reproduce
Complex interplay of evolutionary forces shaping population genomic structure of invasive Aedes albopictus in Southern Europe
Abstract
Background
In the last four decades, the Asian tiger mosquito, Aedes albopictus, vector of several human arboviruses, has spread from its native range in South-East Asia to all over the world, largely through the transportation of its eggs via the international trade in used tires. Albania was the first country invaded in Europe in 1979, followed by Italy in 1990 and other Mediterranean countries after 2000.
Methods/Principal findings
We here inferred the invasion history and migration patterns of Ae. albopictus in Italy (today the most heavily-infested country in Europe), Greece and Albania, by analyzing a panel of >100,000 single nucleotide polymorphisms (SNPs) obtained by sequencing of double-digest Restriction site-Associated DNA (ddRADseq). The obtained dataset was combined with samples previously analyzed from both the native and invasive range worldwide to interpret the results using a broader spatial and historical context. The emerging evolutionary scenario complements the results of other studies in showing that the extraordinary worldwide expansion of Ae. albopictus has occurred thanks to multiple independent invasions by large numbers of colonists from multiple geographic locations in both native and previously invaded areas, consistently with the role of used tires shipments to move large numbers of eggs worldwide. By analyzing mosquitoes from nine sites across ~1,000-km transect in Italy, we were able to detect a complex interplay of drift, isolation by distance mediated divergence, and gene flow in shaping the species very recent invasion and range expansion, suggesting overall high connectivity, likely due to passive transportation of adults via ground transportation, as well as specific adaptations to local conditions.
Conclusions/Significance
Results contribute to characterize one of the most successful histories of animal invasion, and could be used as a baseline for future studies to track epidemiologically relevant characters (e.g. insecticide resistance)
Population Genetic Structure of Aldabra Giant Tortoises
Evolution of population structure on islands is the result of physical processes linked to volcanism, orogenic events, changes in sea level, as well as habitat variation. We assessed patterns of genetic structure in the giant tortoise of the Aldabra atoll, where previous ecological studies suggested population subdivisions as a result of landscape discontinuity due to unsuitable habitat and island separation. Analysis of mitochondrial DNA (mtDNA) control region sequences and allelic variation at 8 microsatellite loci were conducted on tortoises sampled in 3 locations on the 2 major islands of Aldabra. We found no variation in mtDNA sequences. This pattern corroborated earlier work supporting the occurrence of a founding event during the last interglacial period and a further reduction in genetic variability during historical time. On the other hand, significant population structure recorded at nuclear loci suggested allopatric divergence possibly due to geographical barriers among islands and ecological partitions hindering tortoise movements within islands. This is the first attempt to study the population genetics of Aldabra tortoises, which are now at carrying capacity in an isolated terrestrial ecosystem where ecological factors appear to have a strong influence on population dynamic
Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance
Trypanosoma brucei rhodesiense (Tbr) and T. b. gambiense (Tbg), causative agents of Human African Trypanosomiasis (sleeping sickness) in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors (TLFs), components of innate immunity in human serum that protect against infection by other African trypanosomes. In Tbr, lytic activity is suppressed by the Tbr-specific serum-resistance associated (SRA) protein. The mechanism in Tbg is less well understood but has been hypothesized to involve altered activity and expression of haptoglobin haemoglobin receptor (HpHbR). HpHbR has been shown to facilitate internalization of TLF-1 in T.b. brucei (Tbb), a member of the T. brucei species complex that is susceptible to human serum. By evaluating the genetic variability of HpHbR in a comprehensive geographical and taxonomic context, we show that a single substitution that replaces leucine with serine at position 210 is conserved in the most widespread form of Tbg (Tbg group 1) and not found in related taxa, which are either human serum susceptible (Tbb) or known to resist lysis via an alternative mechanism (Tbr and Tbg group 2). We hypothesize that this single substitution contributes to reduced uptake of TLF and thus may play a key role in conferring serum resistance to Tbg group 1. In contrast, similarity in HpHbR sequence among isolates of Tbg group 2 and Tbb/Tbr provides further evidence that human serum resistance in Tbg group 2 is likely independent of HpHbR functio
High Levels of Genetic Differentiation between Ugandan Glossina fuscipes fuscipes Populations Separated by Lake Kyoga
The two types of sleeping sickness in West and East Africa are markedly distinct, require different treatments, and are caused by different parasites. The only country where both parasites are present is Uganda, where they are separated by a narrow 160 km disease-free belt. Because there is no restriction on the movement of humans and animals between the two disease zones, this separation is puzzling. We asked whether this disjunct distribution can be explained by variation within the tsetse fly that is largely responsible for transmitting both diseases in Uganda, Glossina fuscipes fuscipes. We therefore examined whether this tsetse subspecies is genetically uniform across Uganda. Our results indicate that G. f. fusicipes is not genetically different between the two disease zones, but there are clear genetic differences between northern and southern populations, which are separated by Lake Kyoga. Therefore, it is unlikely that variation in the tsetse fly determines the distribution of the two parasites. This implies that the two diseases may fuse in the near future, which would greatly complicate diagnosis and treatment of sleeping sickness in any potential area of overlap
Multiple hybridization events between Drosophila simulans and Drosophila mauritiana are supported by mtDNA introgression
The study of speciation has advanced considerably in the last decades because of the increased application of molecular tools. In particular, the quantification of gene flow between recently diverged species could be addressed. Drosophila simulans and Drosophila mauritiana diverged, probably allopatrically, from a common ancestor approximately 250 000 years ago. However, these species share one mitochondrial DNA (mtDNA) haplotype indicative of a recent episode of introgression. To study the extent of gene flow between these species, we took advantage of a large sample of D. mauritiana and employed a range of different markers, i.e. nuclear and mitochondrial sequences, and microsatellites. This allowed us to detect two new mtDNA haplotypes (MAU3 and MAU4). These haplotypes diverged quite recently from haplotypes of the siII group present in cosmopolitan populations of D. simulans. The mean divergence time of the most diverged haplotype (MAU4) is approximately 127 000 years, which is more than 100 000 years before the assumed speciation time. Interestingly, we also found some evidence for gene flow at the nuclear level because an excess of putatively neutral loci shows significantly reduced differentiation between D. simulans and D. mauritiana. Our results suggest that these species are exchanging genes more frequently than previously thought
Statistical Inference of Selection and Divergence from a Time-Dependent Poisson Random Field Model
We apply a recently developed time-dependent Poisson random field model to aligned DNA sequences from two related biological species to estimate selection coefficients and divergence time. We use Markov chain Monte Carlo methods to estimate species divergence time and selection coefficients for each locus. The model assumes that the selective effects of non-synonymous mutations are normally distributed across genetic loci but constant within loci, and synonymous mutations are selectively neutral. In contrast with previous models, we do not assume that the individual species are at population equilibrium after divergence. Using a data set of 91 genes in two Drosophila species, D. melanogaster and D. simulans, we estimate the species divergence time (or 1.68 million years, assuming the haploid effective population size years) and a mean selection coefficient per generation . Although the average selection coefficient is positive, the magnitude of the selection is quite small. Results from numerical simulations are also presented as an accuracy check for the time-dependent model
- …