2,395 research outputs found
The Vertex Tracker at the Linear Collider: Conceptual Design, Detector R&D and Physics Performances for the Next Generation of Silicon Vertex Detectors
The e+e- linear collider physics programme sets highly demanding requirements on the accurate determination of charged particle trajectories close to their production point. A new generation of Vertex Trackers, based on different technologies of high resolution silicon sensors, is being developed to provide the needed performances. These developments are based on the experience with the LEP/SLC vertex detectors and on the results of the R&D programs for the LHC trackers and also define a further program of R&D specific to the linear collider applications. In this paper the present status of the conceptual tracker design, silicon detector R&D and physics studies is discussed
Comparing traditional geomechanical and remote sensing techniques for rock mass characterization
Analysis of the stability conditions of rock masses starts from detailed geo-structural surveys based on a systematic and quantitative description of the systems of discontinuities. Traditionally, these surveys are performed by implementing the classical geomechanical systems, available in the scientific literature since several decades, through the use of simple tools such as the geological compass to measure dip and dip direction directly on the discontinuity systems, and to fully describe their more significant physical characteristics (length, spacing, roughness, persistence, aperture, filling, termination, etc.). In several cases, this can be difficult because the
discontinuities, or even the rock face, cannot be easily accessible. To have a complete survey, very often the involvement of geologists climbers is required, but in many situations this work is not easy to carry out, and in any case it does not cover the whole rock front.
Today, to solve these problems, traditional geomechanical surveying is implemented by innovative remote techniques using, individually or in combination, instruments such as terrestrial laser scanners and unmanned aerial vehicles to build a point cloud. This latter permits to extract very accurate data on discontinuities for stability analyses, based on areal and non-point observations. In addition, the point cloud allows to map sub-vertical walls in their entirety in much shorter times than traditional surveying. At this regard, two rock slopes were detected in the Sorrento Peninsula (Campania, southern Italy) with techniques that include traditional mapping, dictated by the guidelines of the International Society for Rock Mechanics, and the remote survey, through laser scanning and drone photogrammetry. The data obtained were processed automatically and manually through the Dips, CloudCompare and Discontinuity Set Extractor softwares. In the present contribution we highlight the limits and advantages of the main data collection and the processing techniques, and provide an evaluation of the software packages currently available for the analysis and evaluation of discontinuities, in order to obtain a better characterization of the
rock mass
Atmospheric fluctuations below 0.1 Hz during drift-scan solar diameter measurements
Measurements of the power spectrum of the seeing in the range 0.001-1 Hz have
been performed in order to understand the criticity of the transits' method for
solar diameter monitoring.Comment: 3 pages, 3 figures, proc. of the Fourth French-Chinese meeting on
Solar Physics Understanding Solar Activity: Advances and Challenges, 15 - 18
November, 2011 Nice, Franc
Recombinant human C1 esterase inhibitor (Conestat alfa) for prophylaxis to prevent attacks in adult and adolescent patients with hereditary angioedema
Introduction: Hereditary angioedema (HAE) due to C1 inhibitor (C1-INH) deficiency is a debilitating and potentially lethal disease. Management includes on-demand treatment of angioedema and their prophylaxis. Plasma derived C1-INH is an established treatment for both on demand and prophylaxis of HAE. Conestat alfa is a recombinant form of human C1-INH (rhC1-INH) produced in transgenic rabbits. It has granted drug\u2019s registration as treatment option for acute HAE attacks in adults and adolescents in Europe, America, and other countries. Long-term prophylaxis with rhC1-INH received recent consideration in clinical trials. Areas covered: This review will critically appraise available information about rhC1-INH (conestat alfa) prophylactic treatment in adult and adolescent patients with congenital C1-INH deficiency. Results from a phase II randomized placebo-controlled trial for prophylaxis of severe HAE evidenced positive treatment outcomes for its application, both twice or once weekly. Expert commentary: Phase II clinical studies suggest that rhC1-INH is a viable option for prophylaxis of HAE. Safety and tolerability data are comparable to other available HAE specific drugs, zeroing the possibility for blood-born viral transmission. Sustainability of modern technologies is granting a practically stable and continuous recombinant production process. With other available options, rhC1-INH facilitates tailoring HAE treatment to patients\u2019 needs
Characterisation of Hybrid Pixel Detectors with capacitive charge division
In order to fully exploit the physics potential of the future high energy e+
e- linear collider, a Vertex Tracker providing high resolution track
reconstruction is required. Hybrid pixel sensors are an attractive technology
due to their fast read-out capabilities and radiation hardness. A novel pixel
detector layout with interleaved cells between the readout nodes has been
developed to improve the single point resolution. The results of the
characterisation of the first processed prototypes are reported.Comment: 5 pages, 2 figures, presented at LCWS2000, Linear Collider Workshop,
October 24-28 2000, Fermi National Accelerator Laboratory, Batavia, Illinois,
U.S.A. Proceedings to be published by the American Institute of Physic
Performance of a large limited streamer tube cell in drift mode
The performance of a large (3x3 ) streamer tube cell in drift mode is
shown. The detector space resolution has been studied using cosmic muons
crossing an high precision silicon telescope. The experimental results are
compared with a GARFIELD simulation.Comment: 18 pages, 7 figures. Accepted by Nucl. Instr. and Methods
Hybrid Pixel Detector Development for the Linear Collider Vertex Tracker
In order to fully exploit the physics potential of the future high energy
e+e- linear collider, a Vertex Tracker able to provide particle track
extrapolation with very high resolution is needed. Hybrid Si pixel sensors are
an attractive technology due to their fast read-out capabilities and radiation
hardness. A novel pixel detector layout with interleaved cells has been
developed to improve the single point resolution. Results of the
characterisation of the first processed prototypes by electrostatic
measurements and charge collection studies are discussed.Comment: 5 pages, 1 figure, to appear in the Proceedings of the 9th Int.
Workshop on Vertex Detectors, Lake Michigan MI (USA), September~200
Design and construction of a modular pump-jet thruster for autonomous surface vehicle operations in extremely shallow water
open5noThis paper describes a customized thruster for Autonomous Surface Vehicles (ASV). The thruster is a Pump-Jet Module (PJM), which has been expressly designed, modeled, constructed, and tested for small-/medium-sized ASVs that perform environmental monitoring in extremely shallow waters such as wetlands (rivers, lakes, swamps, marshes), where water depth is only a few centimeters. The PJM is a fully-electric propulsion unit with a 360-degree continuous steering capability. Its main advantage is that the unit is flush with the flat bottom of the vehicle. This makes the PJM suitable for operation in extremely shallow waters because the risk of damaging the thrusting unit in case of grounding is very limited. The PJM was produced using innovative materials, and the hydraulic components were all constructed using a 3D printer.openOdetti A.; Altosole M.; Bruzzone G.; Caccia M.; Viviani M.Odetti, Angelo; Altosole, M.; Bruzzone, G.; Caccia, M.; Viviani, M
Analysis of elliptically polarized states in vertical-cavity-surface-emitting lasers
We study the elliptically polarized states in the spin-flip model for vertical-cavity-surface-emitting lasers. The stability analysis reveals some unexpected features. In correspondence with particular values of the birefringence parameter, which are shown to scale very simply with the ratio of the spin-flip rate to the linewidth enhancement factor, the stability domain can be quite large. Moreover, in some cases two different dynamical regimes can arise from the destabilization of the elliptically polarized states, and they can coexist in a finite interval of the pump parameter. Finally, we show that the bifurcation from the lower frequency linearly polarized state to the elliptically polarized states can be subcritical when the linewidth enhancement factor is roughly smaller than 1
Acoustic motion estimation and control for an unmanned underwater vehicle in a structured environment
The problem of identification and navigation, guidance and control in unmanned underwater vehicles (UUVs) is addressed in this paper. A task-function-based guidance system and an acoustic motion estimation module have been integrated with a conventional UUV autopilot within a two-layered hierarchical architecture for closed-loop control. Basic techniques to estimate the robot dynamics using the sensors mounted on the vehicle have been investigated. The proposed identification techniques and navigation, guidance and control (NGC) system have been tested on Roby2, a UUV developed at the Istituto Automazione Navale of the Italian C.N.R. The experimental set-up, as well as the modalities and results, are discussed.Programma Nazionale di Recerche in Antartide (PNRA
- âŠ