27 research outputs found

    Novel Gene Acquisition on Carnivore Y Chromosomes

    Get PDF
    Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced). We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority

    DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Charting the interactions among genes and among their protein products is essential for understanding biological systems. A flood of interaction data is emerging from high throughput technologies, computational approaches, and literature mining methods. Quick and efficient access to this data has become a critical issue for biologists. Several excellent multi-organism databases for gene and protein interactions are available, yet most of these have understandable difficulty maintaining comprehensive information for any one organism. No single database, for example, includes all available interactions, integrated gene expression data, and comprehensive and searchable gene information for the important model organism, <it>Drosophila melanogaster</it>.</p> <p>Description</p> <p>DroID, the <it>Drosophila </it>Interactions Database, is a comprehensive interactions database designed specifically for <it>Drosophila</it>. DroID houses published physical protein interactions, genetic interactions, and computationally predicted interactions, including interologs based on data for other model organisms and humans. All interactions are annotated with original experimental data and source information. DroID can be searched and filtered based on interaction information or a comprehensive set of gene attributes from Flybase. DroID also contains gene expression and expression correlation data that can be searched and used to filter datasets, for example, to focus a study on sub-networks of co-expressed genes. To address the inherent noise in interaction data, DroID employs an updatable confidence scoring system that assigns a score to each physical interaction based on the likelihood that it represents a biologically significant link.</p> <p>Conclusion</p> <p>DroID is the most comprehensive interactions database available for <it>Drosophila</it>. To facilitate downstream analyses, interactions are annotated with original experimental information, gene expression data, and confidence scores. All data in DroID are freely available and can be searched, explored, and downloaded through three different interfaces, including a text based web site, a Java applet with dynamic graphing capabilities (IM Browser), and a Cytoscape plug-in. DroID is available at <url>http://www.droidb.org</url>.</p

    The Enhancer of Trithorax and Polycomb Corto Interacts with Cyclin G in Drosophila

    Get PDF
    BACKGROUND: Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called "Enhancers of Trithorax and Polycomb" (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene. CONCLUSIONS/SIGNIFICANCE: Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG

    Single origin of sex chromosomes and multiple origins of B chromosomes in fish genus Characidium

    Get PDF
    Chromosome painting with DNA probes obtained from supernumerary (B) and sex chromosomes in three species of fish genus Characidium (C. gomesi, C. pterostictum and C. oiticicai) showed a close resemblance in repetitive DNA content between B and sex chromosomes in C. gomesi and C. pterostictum. This suggests an intraspecific origin for B chromosomes in these two species, probably deriving from sex chromosomes. In C. oiticicai, however, a DNA probe obtained from its B chromosome hybridized with the B but not with the A chromosomes, suggesting that the B chromosome in this species could have arisen interspecifically, although this hypothesis needs further investigation. A molecular phylogenetic analysis performed on nine Characidium species, with two mtDNA genes, showed that the presence of heteromorphic sex chromosomes in these species is a derived condition, and that their origin could have been unique, a conclusion also supported by interspecific chromosome painting with a CgW probe derived from the W chromosome in C. gomesi. Summing up, our results indicate that whereas heteromorphic sex chromosomes in the genus Characidium appear to have had a common and unique origin, B chromosomes may have had independent origins in different species. Our results also show that molecular phylogenetic analysis is an excellent complement for cytogenetic studies by unveiling the direction of evolutionary chromosome changes.This research was funded by grants from the State of Sao Paulo Research Foundation (FAPESP) to EAS (2013/02143-3), grants from National Council for Research and Development (CNPq) to FF (480449/2012-0), and by Coordenacao de Aperfeicoamento de Pessoal de Nıvel Superior (CAPES)

    Arabidopsis MSI1 connects LHP1 to PRC2 complexes

    Full text link
    Polycomb group (PcG) proteins form essential epigenetic memory systems for controlling gene expression during development in plants and animals. However, the mechanism of plant PcG protein functions remains poorly understood. Here, we probed the composition and function of plant Polycomb repressive complex 2 (PRC2). This work established the fact that all known plant PRC2 complexes contain MSI1, a homologue of Drosophila p55. While p55 is not essential for the in vitro enzymatic activity of PRC2, plant MSI1 was required for the functions of the EMBRYONIC FLOWER and the VERNALIZATION PRC2 complexes including trimethylation of histone H3 Lys27 (H3K27) at the target chromatin, as well as gene repression and establishment of competence to flower. We found that MSI1 serves to link PRC2 to LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), a protein that binds H3K27me3 in vitro and in vivo and is required for a functional plant PcG system. The LHP1-MSI1 interaction forms a positive feedback loop to recruit PRC2 to chromatin that carries H3K27me3. Consequently, this can provide a mechanism for the faithful inheritance of local epigenetic information through replication

    Preschool children fail primate prosocial game because of attentional task demands

    Get PDF
    Various nonhuman primate species have been tested with prosocial games (i.e. derivates from dictator games) in order to better understand the evolutionary origin of proactive prosociality in humans. Results of these efforts are mixed, and it is difficult to disentangle true species differences from methodological artifacts. We tested 2- to 5-year-old children with a costly and a cost-free version of a prosocial game that differ with regard to the payoff distribution and are widely used with nonhuman primates. Simultaneously, we assessed the subjects' level of Theory of Mind understanding. Prosocial behavior was demonstrated with the prosocial game, and did not increase with more advanced Theory of Mind understanding. However, prosocial behavior could only be detected with the costly version of the game, whereas the children failed the cost-free version that is most commonly used with nonhuman primates. A detailed comparison of the children's behavior in the two versions of the game indicates that the failure was due to higher attentional demands of the cost-free version, rather than to a lack of prosociality per se. Our results thus show (i) that subtle differences in prosociality tasks can substantially bias the outcome and thus prevent meaningful species comparisons, and (ii) that like in nonhuman primates, prosocial behavior in human children does not require advanced Theory of Mind understanding in the present context. However, both developmental and comparative psychology accumulate increasing evidence for the multidimensionality of prosocial behaviors, suggesting that different forms of prosociality are also regulated differentially. For future efforts to understand the evolutionary origin of prosociality it is thus crucial to take this heterogeneity into account
    corecore