105 research outputs found

    Race and Inflammatory Bowel Disease in an Urban Healthcare System

    Get PDF
    Inflammatory bowel disease (IBD) is increasingly common among non-Caucasian populations, but interracial differences in disease characteristics and management are not well-characterized. We tested the hypothesis that disease characteristics and management vary by race among IBD patients in an ethnically diverse healthcare system. A retrospective study of the safety net healthcare system of San Francisco, CA, from 1996 to 2009 was undertaken. Patient records with International Classification of Diseases, 9th Revision (ICD9) codes 555.xx, 556.xx, and 558.xx were reviewed. Adult patients with confirmed IBD diagnoses were included. Interracial variations in disease characteristics and management were assessed broadly; focused between-race comparisons identified specific differences. The 228 subjects included 77 (33.4%) with Crohn’s disease (CD), 150 (65.8%) with ulcerative colitis, and 1 (0.4%) with IBD, type unclassified. The race distribution included 105 (46.1%) white, 34 (14.9%) black, 35 (15.4%) Hispanic, and 51 (22.4%) Asian subjects. Asians and Hispanics were diagnosed at older ages (41.0 and 37.1 years, respectively) and had shorter disease durations (5.4 and 5.2 years, respectively) than whites (30.5 years at diagnosis and 8.6 years duration, P < 0.05) and blacks (31.7 years at diagnosis and 12.1 years duration, P < 0.05). CD was more common among blacks (50% of subjects) than Asians (25.5% of subjects, P = 0.015). The Montreal classification of IBD was similar among races. Hispanics were less likely than others to be treated with 5-aminosalicylates (5-ASA), immunomodulators, and steroids. Medical and surgical management was otherwise similar among races. Modest race-based differences in IBD characteristics exist in this racially diverse healthcare system, but the management of IBD is similar among race groups

    Protocol for Fit Bodies, Fine Minds: a randomized controlled trial on the affect of exercise and cognitive training on cognitive functioning in older adults

    Get PDF
    Background. Declines in cognitive functioning are a normal part of aging that can affect daily functioning and quality of life. This study will examine the impact of an exercise training program, and a combined exercise and cognitive training program, on the cognitive and physical functioning of older adults. Methods/Design. Fit Bodies, Fine Minds is a randomized, controlled trial. Community-dwelling adults, aged between 65 and 75 years, are randomly allocated to one of three groups for 16 weeks. The exercise-only group do three 60-minute exercise sessions per week. The exercise and cognitive training group do two 60-minute exercise sessions and one 60-minute cognitive training session per week. A no-training control group is contacted every 4 weeks. Measures of cognitive functioning, physical fitness and psychological well-being are taken at baseline (0 weeks), post-test (16 weeks) and 6-month follop (40 weeks). Qualitative responses to the program are taken at post-test. Discussion. With an increasingly aged population, interventions to improve the functioning and quality of life of older adults are particularly important. Exercise training, either alone or in combination with cognitive training, may be an effective means of optimizing cognitive functioning in older adults. This study will add to the growing evidence base on the effectiveness of these interventions. Trial Registration. Australian Clinical Trials Register: ACTRN012607000151437

    Omega-3 fatty acids and vitamin D in immobilisation: Part A - Modulation of appendicular mass content, composition and structure

    Get PDF
    Objectives: Muscle size decreases in response to short-term limb immobilisation. This study set out to determine whether two potential protein-sparing modulators (eicosapentaenoic acid and vitamin D) would attenuate immobilisation-induced changes in muscle characteristics. Design: The study used a randomised, double-blind, placebo-controlled design. Setting: The study took part in a laboratory setting. Participants: Twenty-four male and female healthy participants, aged 23.0±5.8 years. Intervention: The non-dominant arm was immobilised in a sling for a period of nine waking hours a day over two continuous weeks. Participants were randomly assigned to one of three groups: placebo (n=8, Lecithin, 2400 mg daily), omega-3 (ω-3) fatty acids (n=8, eicosapentaenoic acid (EPA); 1770 mg, and docosahexaenoic acid (DHA); 390 mg, daily) or vitamin D (n=8, 1,000 IU daily). Measurements: Muscle and sub-cutaneous adipose thickness (B-mode ultrasonography), body composition (DXA) and arm girth (anthropometry) were measured before immobilisation, immediately on removal of the sling and two weeks after re-mobilisation. Results: Muscle thickness (-5.4±4.3%), upper and lower arm girth (-1.3±0.4 and -0.8±0.8%, respectively), lean mass (-3.6±3.7%) and bone mineral content (BMC) (-2.3±1.5%) decreased significantly with limb immobilisation in the placebo group (P0.05) towards attenuating the decreases in muscle thickness, upper/lower arm girths and BMC observed in the placebo group. The ω-3 supplementation group demonstrated a non-significant attenuation of the decrease in DXA quantified lean mass observed in the placebo group. Sub-cutaneous adipose thickness increased in the placebo group (P<0.05). ω-3 and vitamin D both blunted this response, with ω-3 having a greater effect (P<0.05). All parameters had returned to baseline values at the re-mobilisation phase of the study. Conclusion: Overall, at the current doses, ω-3 and vitamin D supplementation only attenuated one of the changes associated with non-injurious limb immobilisation. These findings would necessitate further research into either a) supplementation linked to injury-induced immobilisation, or b) larger doses of these supplements to confirm/refute the physiological reserve potential of the two supplements

    Integrated high-content quantification of intracellular ROS levels and mitochondrial morphofunction

    Get PDF
    Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS) and their removal by cellular antioxidant systems. Especially under pathological conditions, mitochondria constitute a relevant source of cellular ROS. These organelles harbor the electron transport chain, bringing electrons in close vicinity to molecular oxygen. Although a full understanding is still lacking, intracellular ROS generation and mitochondrial function are also linked to changes in mitochondrial morphology. To study the intricate relationships between the different factors that govern cellular redox balance in living cells, we have developed a high-contentmicroscopy-based strategy for simultaneous quantification of intracellular ROS levels and mitochondrial morphofunction. Here, we summarize the principles of intracellular ROS generation and removal, and we explain the major considerations for performing quantitative microscopy analyses of ROS and mitochondrial morphofunction in living cells. Next, we describe our workflow, and finally, we illustrate that a multiparametric readout enables the unambiguous classification of chemically perturbed cells as well as laminopathy patient cells

    The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications

    Get PDF
    The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted

    Omega-3 fatty acids and vitamin D in immobilisation: Part B- modulation of muscle functional, vascular and activation profiles

    Get PDF
    Abstract Objectives: This study set out to determine whether two potential protein-sparing modulators (eicosapentaenoic acid and vitamin D) would modulate the anticipated muscle functional and related blood vessels function deleterious effects of immobilisation. Design: The study used a randomised, double-blind, placebo-controlled design. Setting: The study took part in a laboratory setting. Participants: Twenty-four male and female healthy participants, aged 23.0±5.8 years. Intervention: The non-dominant arm was immobilised in a sling for a period of nine waking hours a day over two continuous weeks. Participants were randomly assigned to one of three groups: placebo (n=8, Lecithin, 2400 mg daily), omega-3 (-3) fatty acids (n=8, eicosapentaenoic acid (EPA); 1770 mg, and docosahexaenoic acid (DHA); 390 mg DHA, daily) or vitamin D (n=8, 1,000 IU daily). Measurements: Isometric and isokinetic torque, antagonist muscle co-contraction (activation profile), muscle fatigability indices, and arterial resting blood flow were measured before, at the end of the immobilisation period, and two weeks after re-mobilisation. Results: Muscle elbow flexion and extension isometric and isokinetic torque decreased significantly with limb immobilisation in the placebo group (P0.05) towards attenuating the decreases observed in the placebo group. There was no significant change in muscle fatigue parameters or co-contraction values with immobilisation and no effect of supplementation group (P>0.05). Similarly, this immobilisation model had no impact on the assessed blood flow kinetics. All parameters had returned to baseline values at the re-mobilisation phase of the study. Conclusion: Overall, at the current doses, neither -3 nor vitamin D supplementation significantly attenuated declines in torque associated with immobilisation. It would appear that muscle function (described here in Part B) might not be as useful a marker of the effectiveness of a supplement against the impact of immobilisation compared to tissue composition changes (described in Part A)

    A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): is There a Common Cause?

    Get PDF
    corecore