766 research outputs found

    A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication

    Get PDF
    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome

    On Quantum Advantage in Information Theoretic Single-Server PIR

    Get PDF
    In (single-server) Private Information Retrieval (PIR), a server holds a large database DBDB of size nn, and a client holds an index i∈[n]i \in [n] and wishes to retrieve DB[i]DB[i] without revealing ii to the server. It is well known that information theoretic privacy even against an `honest but curious' server requires Ω(n)\Omega(n) communication complexity. This is true even if quantum communication is allowed and is due to the ability of such an adversarial server to execute the protocol on a superposition of databases instead of on a specific database (`input purification attack'). Nevertheless, there have been some proposals of protocols that achieve sub-linear communication and appear to provide some notion of privacy. Most notably, a protocol due to Le Gall (ToC 2012) with communication complexity O(n)O(\sqrt{n}), and a protocol by Kerenidis et al. (QIC 2016) with communication complexity O(log⁥(n))O(\log(n)), and O(n)O(n) shared entanglement. We show that, in a sense, input purification is the only potent adversarial strategy, and protocols such as the two protocols above are secure in a restricted variant of the quantum honest but curious (a.k.a specious) model. More explicitly, we propose a restricted privacy notion called \emph{anchored privacy}, where the adversary is forced to execute on a classical database (i.e. the execution is anchored to a classical database). We show that for measurement-free protocols, anchored security against honest adversarial servers implies anchored privacy even against specious adversaries. Finally, we prove that even with (unlimited) pre-shared entanglement it is impossible to achieve security in the standard specious model with sub-linear communication, thus further substantiating the necessity of our relaxation. This lower bound may be of independent interest (in particular recalling that PIR is a special case of Fully Homomorphic Encryption)

    A new method to measure necrotic core and calcium content in coronary plaques using intravascular ultrasound radiofrequency-based analysis

    Get PDF
    Although previous intravascular ultrasound (IVUS) radiofrequency-based analysis data showed acceptable reproducibility for plaque composition, measurements are not easily obtained, particularly that of lumen contour, because of the limited IVUS resolution. The purpose of this study was to compare a new measurement method (Shin’s method) and the conventional measurement method for necrotic core and calcium content in atherosclerotic lesions using Virtual Histology-intravascular ultrasound (VH-IVUS). Fifty-seven patients with unstable angina who underwent elective percutaneous coronary intervention were included. Shin’s method focuses on catheter contour, instead of lumen contour, and vessel contour. Patients ages ranged from 46 to 88 years, and 34 were men. A total of 1,401 frames from 59 culprit lesions were assessed. There were no significant differences in the mean area and volume of necrotic core and dense calcium between the two methods. Correlation coefficients (R) were ≄0.99 for all above mentioned parameters (P < 0.001). Between methods, the absolute differences in mean area and volume of necrotic core were 0.02 ± 0.02 mmÂČ and 0.34 ± 0.29 mmÂł, respectively, while for mean area and volume of dense calcium, the absolute differences were 0.04 ± 0.07 mmÂČ and 0.36 ± 0.52 mmÂł, respectively. The reproducibility of Shin’s method was excellent. For area of the necrotic core and dense calcium, the means of the differences between the two measurements were nearly zero, and the reproducibility coefficients were within 1% of the means of the two measurements. Mean analysis time for both measurements was 26.8 ± 6.7 min/segment in the conventional method and 3.3 ± 0.6 min/segment in Shin’s method. Shin’s method for measurement of necrotic core and dense calcium using VH-IVUS demonstrated a good correlation with the conventional method and excellent reproducibility. Also, Shin’s method required a significantly shorter analysis time than the conventional method. Therefore, Shin’s method could replace the conventional method for necrotic core and calcium measurement in atherosclerotic lesions, and it might be useful in the catheterization laboratory for online clinical decision

    Noise Reduction and Image Quality Improvement of Low Dose and Ultra Low Dose Brain Perfusion CT by HYPR-LR Processing

    Get PDF
    To evaluate image quality and signal characteristics of brain perfusion CT (BPCT) obtained by low-dose (LD) and ultra-low-dose (ULD) protocols with and without post-processing by highly constrained back-projection (HYPR)–local reconstruction (LR) technique.Simultaneous BPCTs were acquired in 8 patients on a dual-source-CT by applying LD (80 kV,200 mAs,14×1.2 mm) on tube A and ULD (80 kV,30 mAs,14×1.2 mm) on tube B. Image data from both tubes was reconstructed with identical parameters and post-processed using the HYPR-LR. Correlation coefficients between mean and maximum (MAX) attenuation values within corresponding ROIs, area under attenuation curve (AUC), and signal to noise ratio (SNR) of brain parenchyma were assessed. Subjective image quality was assessed on a 5-point scale by two blinded observers (1:excellent, 5:non-diagnostic).Radiation dose of ULD was more than six times lower compared to LD. SNR was improved by HYPR: ULD vs. ULD+HYPR: 1.9±0.3 vs. 8.4±1.7, LD vs. LD+HYPR: 5.0±0.7 vs. 13.4±2.4 (both p<0.0001). There was a good correlation between the original datasets and the HYPR-LR post-processed datasets: r = 0.848 for ULD and ULD+HYPR and r = 0.933 for LD and LD+HYPR (p<0.0001 for both). The mean values of the HYPR-LR post-processed ULD dataset correlated better with the standard LD dataset (r = 0.672) than unprocessed ULD (r = 0.542), but both correlations were significant (p<0.0001). There was no significant difference in AUC or MAX. Image quality was rated excellent (1.3) in LD+HYPR and non-diagnostic (5.0) in ULD. LD and ULD+HYPR images had moderate image quality (3.3 and 2.7).SNR and image quality of ULD-BPCT can be improved to a level similar to LD-BPCT when using HYPR-LR without distorting attenuation measurements. This can be used to substantially reduce radiation dose. Alternatively, LD images can be improved by HYPR-LR to higher diagnostic quality

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore