83 research outputs found
Physiochemical property space distribution among human metabolites, drugs and toxins
<p>Abstract</p> <p>Background</p> <p>The current approach to screen for drug-like molecules is to sieve for molecules with biochemical properties suitable for desirable pharmacokinetics and reduced toxicity, using predominantly biophysical properties of chemical compounds, based on empirical rules such as Lipinski's "rule of five" (Ro5). For over a decade, Ro5 has been applied to combinatorial compounds, drugs and ligands, in the search for suitable lead compounds. Unfortunately, till date, a clear distinction between drugs and non-drugs has not been achieved. The current trend is to seek out drugs which show metabolite-likeness. In identifying similar physicochemical characteristics, compounds have usually been clustered based on some characteristic, to reduce the search space presented by large molecular datasets. This paper examines the similarity of current drug molecules with human metabolites and toxins, using a range of computed molecular descriptors as well as the effect of comparison to clustered data compared to searches against complete datasets.</p> <p>Results</p> <p>We have carried out statistical and substructure functional group analyses of three datasets, namely human metabolites, drugs and toxin molecules. The distributions of various molecular descriptors were investigated. Our analyses show that, although the three groups are distinct, present-day drugs are closer to toxin molecules than to metabolites. Furthermore, these distributions are quite similar for both clustered data as well as complete or unclustered datasets.</p> <p>Conclusion</p> <p>The property space occupied by metabolites is dissimilar to that of drugs or toxin molecules, with current drugs showing greater similarity to toxins than to metabolites. Additionally, empirical rules like Ro5 can be refined to identify drugs or drug-like molecules that are clearly distinct from toxic compounds and more metabolite-like. The inclusion of human metabolites in this study provides a deeper insight into metabolite/drug/toxin-like properties and will also prove to be valuable in the prediction or optimization of small molecules as ligands for therapeutic applications.</p
Why Amphibians Are More Sensitive than Mammals to Xenobiotics
Dramatic declines in amphibian populations have been described all over the world since the 1980s. The evidence that the sensitivity to environmental threats is greater in amphibians than in mammals has been generally linked to the observation that amphibians are characterized by a rather permeable skin. Nevertheless, a numerical comparison of data of percutaneous (through the skin) passage between amphibians and mammals is lacking. Therefore, in this investigation we have measured the percutaneous passage of two test molecules (mannitol and antipyrine) and three heavily used herbicides (atrazine, paraquat and glyphosate) in the skin of the frog Rana esculenta (amphibians) and of the pig ear (mammals), by using the same experimental protocol and a simple apparatus which minimizes the edge effect, occurring when the tissue is clamped in the usually used experimental device
Let’s not forget tautomers
A compound exhibits tautomerism if it can be represented by two structures that are related by an intramolecular movement of hydrogen from one atom to another. The different tautomers of a molecule usually have different molecular fingerprints, hydrophobicities and pKa’s as well as different 3D shape and electrostatic properties; additionally, proteins frequently preferentially bind a tautomer that is present in low abundance in water. As a result, the proper treatment of molecules that can tautomerize, ~25% of a database, is a challenge for every aspect of computer-aided molecular design. Library design that focuses on molecular similarity or diversity might inadvertently include similar molecules that happen to be encoded as different tautomers. Physical property measurements might not establish the properties of individual tautomers with the result that algorithms based on these measurements may be less accurate for molecules that can tautomerize—this problem influences the accuracy of filtering for library design and also traditional QSAR. Any 2D or 3D QSAR analysis must involve the decision of if or how to adjust the observed Ki or IC50 for the tautomerization equilibria. QSARs and recursive partitioning methods also involve the decision as to which tautomer(s) to use to calculate the molecular descriptors. Docking virtual screening must involve the decision as to which tautomers to include in the docking and how to account for tautomerization in the scoring. All of these decisions are more difficult because there is no extensive database of measured tautomeric ratios in both water and non-aqueous solvents and there is no consensus as to the best computational method to calculate tautomeric ratios in different environments
The role of ligand efficiency metrics in drug discovery
The judicious application of ligand or binding efficiencies, which quantify the molecular properties required to gain binding affinity for a drug target, is gaining traction in the selection and optimisation of fragments, hits, and leads. Retrospective analysis of recently marketed oral drugs shows that they frequently have highly optimised ligand efficiency values for their target. Optimising ligand efficiencies based on both molecular size and lipophilicity, when set in the context of the specific target, has the potential to ameliorate the molecular inflation that pervades current practice in medicinal chemistry, and to increase the developability of drug candidates
Low potency toxins reveal dense interaction networks in metabolism
Background
The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs.
Results
Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function.
Conclusions
The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved
- …