134 research outputs found
Trading-off Data Fit and Complexity in Training Gaussian Processes with Multiple Kernels
This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recordLOD 2019: Fifth International Conference on Machine Learning, Optimization, and Data Science, 10-13 September 2019, Siena, ItalyGaussian processes (GPs) belong to a class of probabilistic techniques that have been successfully used in different domains of machine learning and optimization. They are popular because they provide uncertainties in predictions, which sets them apart from other modelling methods providing only point predictions. The uncertainty is particularly useful for decision making as we can gauge how reliable a prediction is. One of the fundamental challenges in using GPs is that the efficacy of a model is conferred by selecting an appropriate kernel and the associated hyperparameter values for a given problem. Furthermore, the training of GPs, that is optimizing the hyperparameters using a data set is traditionally performed using a cost function that is a weighted sum of data fit and model complexity, and the underlying trade-off is completely ignored. Addressing these challenges and shortcomings, in this article, we propose the following automated training scheme. Firstly, we use a weighted product of multiple kernels with a view to relieve the users from choosing an appropriate kernel for the problem at hand without any domain specific knowledge. Secondly, for the first time, we modify GP training by using a multi-objective optimizer to tune the hyperparameters and weights of multiple kernels and extract an approximation of the complete trade-off front between data-fit and model complexity. We then propose to use a novel solution selection strategy based on mean standardized log loss (MSLL) to select a solution from the estimated trade-off front and finalise training of a GP model. The results on three data sets and comparison with the standard approach clearly show the potential benefit of the proposed approach of using multi-objective optimization with multiple kernels.Natural Environment Research Council (NERC
2020 APHRS/HRS Expert Consensus Statement on the Investigation of Decedents with Sudden Unexplained Death and Patients with Sudden Cardiac Arrest, and of Their Families.
This international multidisciplinary document intends to provide clinicians with evidence-based practical patient-centered recommendations for evaluating patients and decedents with (aborted) sudden cardiac arrest and their families. The document includes a framework for the investigation of the family allowing steps to be taken, should an inherited condition be found, to minimize further events in affected relatives. Integral to the process is counseling of the patients and families, not only because of the emotionally charged subject, but because finding (or not finding) the cause of the arrest may influence management of family members. The formation of multidisciplinary teams is essential to provide a complete service to the patients and their families, and the varied expertise of the writing committee was formulated to reflect this need. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by Class of Recommendation and Level of Evidence. The recommendations were opened for public comment and reviewed by the relevant scientific and clinical document committees of the Asia Pacific Heart Rhythm Society (APHRS) and the Heart Rhythm Society (HRS); the document underwent external review and endorsement by the partner and collaborating societies. While the recommendations are for optimal care, it is recognized that not all resources will be available to all clinicians. Nevertheless, this document articulates the evaluation that the clinician should aspire to provide for patients with sudden cardiac arrest, decedents with sudden unexplained death, and their families
Association between atrial fibrillation and <i>Helicobacter pylori</i>
The connection between atrial fibrillation (AF) and H. pylori (HP) infection is still matter of debate. We performed a systematic review and metanalysis of studies reporting the association between AF and HF. A systematic review of all available reports in literature of the incidence of HP infection in AF and comparing this incidence with subjects without AF were analysed. Risk ratio and 95% confidence interval (CI) and risk difference with standard error (SE) were the main statistics indexes. Six retrospective studies including a total of 2921 were included at the end of the selection process. Nine hundred-fifty-six patients (32.7%) were in AF, whereas 1965 (67.3%) were in normal sinus rhythm (NSR). Overall, 335 of 956 patients with AF were HP positive (35%), whereas 621 were HP negative (65%). In addition, 643 of 1965 NSR patients (32.7%) were HP positive while 1,322 were negative (67.3%; Chi-square 2.15, p = 0.21). The Cumulative Risk Ratio for AF patients for developing an HP infection was 1.19 (95% CI 1.08–1.41). In addition, a small difference risk towards AF was found (0.11 [SE = 0.04]). Moreover, neither RR nor risk difference were influenced by the geographic area at meta-regression analysis. Finally, there was a weak correlation between AF and HP (coefficient = 0.04 [95% CI −0.01–0.08]). We failed to find any significant correlation between H. pylori infection and AF and, based on our data, it seems unlikely than HP can be considered a risk factor for AF. Further larger research is warranted
In vitro induction and proliferation of protocorm-like bodies (PLBs) from leaf segments of Phalaenopsis bellina (Rchb.f.) Christenson
An in vitro culture procedure was established to induce protocorm-like bodies (PLBs) from leaf segments of the Phalaenopsis bellina (Rchb.f.) Christenson directly from epidermal cells without intervening callus on ½ strength modified Murashige and Skoog (MS) (in Physiol Plant 15:473–497, 1962) medium supplemented with 1-Naphthaleneacetic acid (NAA; 0, 0.1, 1 mg/l) and Thidiazuron (TDZ; 0, 0.1, 1, 3 mg/l). The best response was established at 3 mg/l TDZ which induced 78% of leaf segments to form a mean number of 14 PLBs per explant after 16 weeks of culture. No PLBs were found when leaf segments were cultured on ½ strength modified MS media supplemented with 0.1 and 1 mg/l NAA. The best induction percentage for auxin: cytokinin combination was at the combination of NAA and TDZ at 1.0 and 3.0 mg/l which gave 72% induction with 9 PLBs per explant. Semi-solid ½ strength MS and liquid Vacin and Went (VW) (in Bot Gaz 110:605–613, 1949) medium were used in order to find the highest survival and number of PLBs proliferation after 3 months in culture. Half strength MS showed an average of 9 PLBs in comparison with VW with an average of 5.3 PLBs per explants. Histological observations revealed that the regenerated PLBs were generally formed from the epidermal layers of the posterior regions of the leaf segments. Scanning electron micrograph of PLBs showed the origin of newly formed PLB from the peripheral region of leaf segments
Three-Dimensional Imaging of the Mouse Neurovasculature with Magnetic Resonance Microscopy
Knowledge of the three-dimensional (3D) architecture of blood vessels in the brain is crucial because the progression of various neuropathologies ranging from Alzheimer's disease to brain tumors involves anomalous blood vessels. The challenges in obtaining such data from patients, in conjunction with development of mouse models of neuropathology, have made the murine brain indispensable for investigating disease induced neurovascular changes. Here we describe a novel method for “whole brain” 3D mapping of murine neurovasculature using magnetic resonance microscopy (μMRI). This approach preserves the vascular and white matter tract architecture, and can be combined with complementary MRI contrast mechanisms such as diffusion tensor imaging (DTI) to examine the interplay between the vasculature and white matter reorganization that often characterizes neuropathologies. Following validation with micro computed tomography (μCT) and optical microscopy, we demonstrate the utility of this method by: (i) combined 3D imaging of angiogenesis and white matter reorganization in both, invasive and non-invasive brain tumor models; (ii) characterizing the morphological heterogeneity of the vascular phenotype in the murine brain; and (iii) conducting “multi-scale” imaging of brain tumor angiogenesis, wherein we directly compared in vivo MRI blood volume measurements with ex vivo vasculature data
Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein
Citation: Londono-Renteria, B., Troupin, A., Conway, M. J., Vesely, D., Ledizet, M., Roundy, C. M., . . . Colpitts, T. M. (2015). Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein. Plos Pathogens, 11(10), 23. doi:10.1371/journal.ppat.1005202Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were >= 5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses
- …