14 research outputs found

    Characterisation of the covalently-bound anionic flavin radical in Monoamine Oxidase A by Electron Paramagnetic Resonance

    No full text
    It was recently suggested that partially reduced monoamine oxidase (MAO) A contains an equilibrium mixture of an anionic flavin radical and a tyrosyl radical (Rigby, S. E.; et al. J. Biol. Chem. 2005, 280, 4627-4632). These observations formed the basis for a revised radical mechanism for MAO. In contrast, an earlier study of MAO B only found evidence for an anionic flavin radical (DeRose, V. J.; et al. Biochemistry 1996, 35, 11085-11091). To resolve the discrepancy, we have performed continuous-wave electron paramagnetic resonance at 94 GHz (W-band) on the radical form of MAO A. A comparison with D-amino acid oxidase (DAAO) demonstrates that both enzymes only contain anionic flavin radicals. Pulsed electron-nuclear double resonance spectra of the two enzymes recorded at 9 GHz (X-band) reveal distinct hyperfine coupling patterns for the two flavins. Density functional theory calculations show that these differences can be understood in terms of the difference at C8 of the isoalloxazine ring. DAAO contains a noncovalently bound flavin whereas MAO A contains a flavin covalently bound to a cysteinyl residue at C8. The similar electronic structures and hydrophobic environments of MAO and DAAO, and the similar structural motifs of their substrates suggest that a direct hydride transfer catalytic mechanism established for DAAO (Umhau, S.; et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 12463-12468) should be considered for MAO

    Photosensitisation studies of silicone polymer doped with methylene blue and nanogold for antimicrobial applications

    No full text
    Photosensitisation of polymers has important potential clinical applications such as the prevention of catheter-associated urinary tract infections (CAUTIs). Polymers incorporated with methylene blue (MB) and 2 nm gold nanoparticles (AuNPs) are effective in killing bacteria at the surface following low power visible illumination. Studies of medical-grade silicone polymer samples including segments from urinary catheters were carried out to investigate the generation of reactive oxygen species and the involvement of Type 1 and 2 mechanisms. Singlet oxygen was observed using direct phosphorescence detection and hydroxyl radical generation using electron paramagnetic resonance (EPR) spectroscopy; we conclude that both Type 1 and 2 mechanisms can operate with polymeric photosensitisation. Transmission electron microscopy (TEM) directly demonstrated the incorporation of AuNPs at the surface of the silicone. Using silicone doped with MB AuNPs, a ≥3 log10 reduction in the number of viable Staphylococcus epidermidis bacteria was achieved when exposed to low power laser light; prior sterilisation with ethylene oxide (EO) had no influence on efficacy

    Probing the C60 triplet state coupling to nuclear spins inside and out

    Get PDF
    The photoexcitation of functionalized fullerenes to their paramagnetic triplet electronic state can be studied by pulsed electron paramagnetic resonance (EPR) spectroscopy, whereas the interactions of this state with the surrounding nuclear spins can be observed by a related technique: electron nuclear double resonance (ENDOR). In this study, we present EPR and ENDOR studies on a functionalized exohedral fullerene system, dimethyl[9-hydro (C60-Ih)[5,6]fulleren-1(9H)-yl]phosphonate (DMHFP), where the triplet electron spin has been used to hyperpolarize, couple and measure two nuclear spins. We go on to discuss the extension of these methods to study a new class of endohedral fullerenes filled with small molecules, such as H2@C60, and we relate the results to density functional calculation
    corecore