33 research outputs found
Dynamics of cholesteric structures in an electric field
Motivated by Lehmann-like rotation phenomena in cholesteric drops we study
the transverse drift of two types of cholesteric fingers, which form rotating
spirals in thin layers of cholesteric liquid crystal in an ac or dc electric
field. We show that electrohydrodynamic effects induced by Carr-Helfrich charge
separation or flexoelectric charge generation can describe the drift of
cholesteric fingers. We argue that the observed Lehmann-like phenomena can be
understood on the same basis.Comment: 4 pages, 4 figures, submitted to PR
Orientational transitions in a nematic confined by competing surfaces
The effect of confinement on the orientational structure of a nematic liquid
crystal model has been investigated by using a version of density-functional
theory (DFT). We have focused on the case of a nematic confined by opposing
flat surfaces, in slab geometry (slit pore), which favor planar molecular
alignment (parallel to the surface) and homeotropic alignment (perpendicular to
the surface), respectively. The spatial dependence of the tilt angle of the
director with respect to the surface normal has been studied, as well as the
tensorial order parameter describing the molecular order around the director.
For a pore of given width, we find that, for weak surface fields, the alignment
of the nematic director is perpendicular to the surface in a region next to the
surface favoring homeotropic alignment, and parallel along the rest of the
pore, with a interface separating these regions (S phase). For strong surface
fields, the director is distorted uniformly, the tilt angle exhibiting a linear
dependence with the distance normal to the surface (L phase). Our calculations
reveal the existence of a first-order transition between the two director
configurations, which is driven by changes in the surface field strength, and
also by changes in the pore width. In the latter case the transition occurs,
for a given surface field, between the S phase for narrow pores and the L phase
for wider pores. A link between the L-S transition and the anchoring transition
observed for the semi-infinite case is proposed. We also provide calculations
with a phenomenological approach that yields the same main result that DFT in
the scale length where this is valid.Comment: submitted to PR
Phase Behavior of Bent-Core Molecules
Recently, a new class of smectic liquid crystal phases (SmCP phases)
characterized by the spontaneous formation of macroscopic chiral domains from
achiral bent-core molecules has been discovered. We have carried out Monte
Carlo simulations of a minimal hard spherocylinder dimer model to investigate
the role of excluded volume interations in determining the phase behavior of
bent-core materials and to probe the molecular origins of polar and chiral
symmetry breaking. We present the phase diagram as a function of pressure or
density and dimer opening angle . With decreasing , a transition
from a nonpolar to a polar smectic phase is observed near ,
and the nematic phase becomes thermodynamically unstable for . No chiral smectic or biaxial nematic phases were found.Comment: 4 pages Revtex, 3 eps figures (included
Anti-counterfeiting: Mixing the Physical and the Digital World
In this paper, we overview a set of desiderata for building digital
anti-counterfeiting technologies that rely upon the difficulty of
manufacturing randomized complex 3D objects. Then, we observe how
this set is addressed by RF-DNA, an anti-counterfeiting technology
recently proposed by DeJean and Kirovski. RF-DNA constructs
certificates of authenticity as random objects that exhibit
substantial uniqueness in the electromagnetic domain
On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle (Part One)
In October 1924, the Physical Review, a relatively minor journal at the time,
published a remarkable two-part paper by John H. Van Vleck, working in virtual
isolation at the University of Minnesota. Van Vleck combined advanced
techniques of classical mechanics with Bohr's correspondence principle and
Einstein's quantum theory of radiation to find quantum analogues of classical
expressions for the emission, absorption, and dispersion of radiation. For
modern readers Van Vleck's paper is much easier to follow than the famous paper
by Kramers and Heisenberg on dispersion theory, which covers similar terrain
and is widely credited to have led directly to Heisenberg's "Umdeutung" paper.
This makes Van Vleck's paper extremely valuable for the reconstruction of the
genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did
not take the next step and develop matrix mechanics himself.Comment: 82 page
Rotational propulsion enabled by inertia
The fluid mechanics of small-scale locomotion has recently attracted considerable attention, due to its importance in cell motility and the design of artificial micro-swimmers for biomedical applications. Most studies on the topic consider the ideal limit of zero Reynolds number. In this paper, we investigate a simple propulsion mechanism --an up-down asymmetric dumbbell rotating about its axis of symmetry-- unable to propel in the absence of inertia in a Newtonian fluid. Inertial forces lead to continuous propulsion for all finite values of the Reynolds number. We study computationally its propulsive characteristics as well as analytically in the small-Reynolds-number limit. We also derive the optimal dumbbell geometry. The direction of propulsion enabled by inertia is opposite to that induced by viscoelasticity