119 research outputs found
One and two dimensional analysis of 3pi correlations measured in Pb+Pb interactions
3pi- correlations from Pb+Pb collisions at 158 GeV/c per nucleon are
presented as measured by the focusing spectrometer of the NA44 experiment at
CERN. The three-body effect is found to be stronger for PbPb than for SPb. The
two-dimensional three-particle correlation function is also measured and the
longitudinal extension of the source is larger than the transverse extension
Two-Proton Correlations near Midrapidity in p+Pb and S+Pb Collisions at the CERN SPS
Correlations of two protons emitted near midrapidity in p+Pb collisions at
450 GeV/c and S+Pb collisions at 200A GeV/c are presented, as measured by the
NA44 Experiment. The correlation effect, which arises as a result of final
state interactions and Fermi-Dirac statistics, is related to the space-time
characteristics of proton emission. The measured source sizes are smaller than
the size of the target lead nucleus but larger than the sizes of the
projectiles. A dependence on the collision centrality is observed; the source
size increases with decreasing impact parameter. Proton source sizes near
midrapidity appear to be smaller than those of pions in the same interactions.
Quantitative agreement with the results of RQMD (v1.08) simulations is found
for p+Pb collisions. For S+Pb collisions the measured correlation effect is
somewhat weaker than that predicted by the model simulations, implying either a
larger source size or larger contribution of protons from long-lived particle
decays.Comment: 10 pages (LaTeX) text, 4 (EPS) figures; accepted for publication in
Phys. Lett.
Strange Meson Enhancement in PbPb Collisions
The NA44 Collaboration has measured yields and differential distributions of
K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the
center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A
considerable enhancement of K+ production per pi is observed, as compared to
p+p collisions at this energy. To illustrate the importance of secondary hadron
rescattering as an enhancement mechanism, we compare strangeness production at
the SPS and AGS with predictions of the transport model RQMD.Comment: 11 pages, including 4 figures, LATE
Charged kaon and pion production at midrapidity in proton nucleus and sulphur nucleus collisions
The NA44 collaboration has measured charged kaon and pion distributions at midrapidity in sulphur and proton collisions with nuclear targets at 200 and 450 GeV/c per nucleon, respectively. The inverse slopes of kaons are larger than those of pions. The difference in the inverse slopes of pions, kaons and protons, all measured in our spectrometer, increases with system size and is consistent with the buildup of collective flow for larger systems. The target dependence of both the yields and inverse slopes is stronger for the sulphur beam suggesting the increased importance of secondary rescattering for SA reactions. The rapidity density, dN/dy, of both K+ and K- increases more rapidly with system size than for pi+ in a similar rapidity region. This trend continues with increasing centrality, and according to RQMD, it is caused by secondary reactions between mesons and baryons. The K-/K+ ratio falls with increasing system size but more slowly than the pbar/p ratio. The pi-/pi+ ratio is close to unity for all systems. From pBe to SPb the K+/p ratio decreases while K-/pbar increases and ({K+*K-}/{p*pbar})**1/2 stays constant. These data suggest that as larger nuclei collide, the resulting system has a larger transverse expansion, baryon density and an increasing fraction of strange quarks.The NA44 collaboration has measured charged kaon and pion distributions at midrapidity in sulphur and proton collisions with nuclear targets at 200 and 450 GeV/c per nucleon, respectively. The inverse slopes of kaons are larger than those of pions. The difference in the inverse slopes of pions, kaons and protons, all measured in our spectrometer, increases with system size and is consistent with the buildup of collective flow for larger systems. The target dependence of both the yields and inverse slopes is stronger for the sulphur beam suggesting the increased importance of secondary rescattering for SA reactions. The rapidity density, dN/dy, of both K+ and K- increases more rapidly with system size than for pi+ in a similar rapidity region. This trend continues with increasing centrality, and according to RQMD, it is caused by secondary reactions between mesons and baryons. The K-/K+ ratio falls with increasing system size but more slowly than the pbar/p ratio. The pi-/pi+ ratio is close to unity for all systems. From pBe to SPb the K+/p ratio decreases while K-/pbar increases and ({K+*K-}/{p*pbar})**1/2 stays constant. These data suggest that as larger nuclei collide, the resulting system has a larger transverse expansion, baryon density and an increasing fraction of strange quarks.The NA44 collaboration has measured charged kaon and pion distributions at midrapidity in sulphur and proton collisions with nuclear targets at 200 and 450 GeV/c per nucleon, respectively. The inverse slopes of kaons are larger than those of pions. The difference in the inverse slopes of pions, kaons and protons, all measured in our spectrometer, increases with system size and is consistent with the buildup of collective flow for larger systems. The target dependence of both the yields and inverse slopes is stronger for the sulphur beam suggesting the increased importance of secondary rescattering for SA reactions. The rapidity density, dN/dy, of both K+ and K- increases more rapidly with system size than for pi+ in a similar rapidity region. This trend continues with increasing centrality, and according to RQMD, it is caused by secondary reactions between mesons and baryons. The K-/K+ ratio falls with increasing system size but more slowly than the pbar/p ratio. The pi-/pi+ ratio is close to unity for all systems. From pBe to SPb the K+/p ratio decreases while K-/pbar increases and ({K+*K-}/{p*pbar})**1/2 stays constant. These data suggest that as larger nuclei collide, the resulting system has a larger transverse expansion, baryon density and an increasing fraction of strange quarks
Search for critical phenomena in Pb - Pb collisions
NA44 uses a 512 channel Si pad array covering to study charged hadron production in Pb+Pb collisions at the CERN SPS. We apply a multiresolution analysis, based on a Discrete Wavelet Transformation, to probe the texture of particle distributions event-by-event, by simultaneous localization of features in space and scale. Scanning a broad range of multiplicities, we look for a possible critical behaviour in the power spectra of local density fluctuations. The data are compared with detailed simulations of detector response, using heavy ion event generators, and with a reference sample created via event mixing.NA44 uses a 512 channel Si pad array covering to study charged hadron production in Pb+Pb collisions at the CERN SPS. We apply a multiresolution analysis, based on a Discrete Wavelet Transformation, to probe the texture of particle distributions event-by-event, by simultaneous localization of features in space and scale. Scanning a broad range of multiplicities, we look for a possible critical behaviour in the power spectra of local density fluctuations. The data are compared with detailed simulations of detector response, using heavy ion event generators, and with a reference sample created via event mixing
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
Transverse momentum spectra of charged particles in proton-proton collisions at GeV with ALICE at the LHC
The inclusive charged particle transverse momentum distribution is measured
in proton-proton collisions at GeV at the LHC using the ALICE
detector. The measurement is performed in the central pseudorapidity region
over the transverse momentum range GeV/.
The correlation between transverse momentum and particle multiplicity is also
studied. Results are presented for inelastic (INEL) and non-single-diffractive
(NSD) events. The average transverse momentum for is (stat.) (syst.) GeV/ and
\left_{\rm NSD}=0.489\pm0.001 (stat.) (syst.)
GeV/, respectively. The data exhibit a slightly larger than measurements in wider pseudorapidity intervals. The results are
compared to simulations with the Monte Carlo event generators PYTHIA and
PHOJET.Comment: 20 pages, 8 figures, 2 tables, published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/390
Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV
We report on the first measurement of the triangular , quadrangular
, and pentagonal charged particle flow in Pb-Pb collisions at 2.76
TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show
that the triangular flow can be described in terms of the initial spatial
anisotropy and its fluctuations, which provides strong constraints on its
origin. In the most central events, where the elliptic flow and
have similar magnitude, a double peaked structure in the two-particle azimuthal
correlations is observed, which is often interpreted as a Mach cone response to
fast partons. We show that this structure can be naturally explained from the
measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/387
- …