5 research outputs found
The evolution of language: a comparative review
For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language
Salmonella Minnesota de origem avícola apresenta fatores de virulência e risco potencial aos humanos
In silico evolutionary developmental neurobiology and the origin of natural language
Abstract. It is justified to assume that part of our genetic endowment contributes to our language skills, yet it is impossible to tell at this moment exactly how genes affect the language faculty. We complement experimental biological studies by an in silico approach in that we simulate the evolution of neuronal networks under selection for language-related skills. At the heart of this project is the Evolutionary Neurogenetic Algorithm (ENGA) that is deliberately biomimetic. The design of the system was inspired by important biological phenomena such as brain ontogenesis, neuron morphologies, and indirect genetic encoding. Neuronal networks were selected and were allowed to reproduce as a function of their performance in the given task. The selected neuronal networks in all scenarios were able to solve the communication problem they had to face. The most striking feature of the model is that it works with highly indirect genetic encoding—just as brains do.