56 research outputs found
Dynamical stability of infinite homogeneous self-gravitating systems: application of the Nyquist method
We complete classical investigations concerning the dynamical stability of an
infinite homogeneous gaseous medium described by the Euler-Poisson system or an
infinite homogeneous stellar system described by the Vlasov-Poisson system
(Jeans problem). To determine the stability of an infinite homogeneous stellar
system with respect to a perturbation of wavenumber k, we apply the Nyquist
method. We first consider the case of single-humped distributions and show
that, for infinite homogeneous systems, the onset of instability is the same in
a stellar system and in the corresponding barotropic gas, contrary to the case
of inhomogeneous systems. We show that this result is true for any symmetric
single-humped velocity distribution, not only for the Maxwellian. If we
specialize on isothermal and polytropic distributions, analytical expressions
for the growth rate, damping rate and pulsation period of the perturbation can
be given. Then, we consider the Vlasov stability of symmetric and asymmetric
double-humped distributions (two-stream stellar systems) and determine the
stability diagrams depending on the degree of asymmetry. We compare these
results with the Euler stability of two self-gravitating gaseous streams.
Finally, we determine the corresponding stability diagrams in the case of
plasmas and compare the results with self-gravitating systems
Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection
Realistic astrophysical environments are turbulent due to the extremely high
Reynolds numbers. Therefore, the theories of reconnection intended for
describing astrophysical reconnection should not ignore the effects of
turbulence on magnetic reconnection. Turbulence is known to change the nature
of many physical processes dramatically and in this review we claim that
magnetic reconnection is not an exception. We stress that not only
astrophysical turbulence is ubiquitous, but also magnetic reconnection itself
induces turbulence. Thus turbulence must be accounted for in any realistic
astrophysical reconnection setup. We argue that due to the similarities of MHD
turbulence in relativistic and non-relativistic cases the theory of magnetic
reconnection developed for the non-relativistic case can be extended to the
relativistic case and we provide numerical simulations that support this
conjecture. We also provide quantitative comparisons of the theoretical
predictions and results of numerical experiments, including the situations when
turbulent reconnection is self-driven, i.e. the turbulence in the system is
generated by the reconnection process itself. We show how turbulent
reconnection entails the violation of magnetic flux freezing, the conclusion
that has really far reaching consequences for many realistically turbulent
astrophysical environments. In addition, we consider observational testing of
turbulent reconnection as well as numerous implications of the theory. The
former includes the Sun and solar wind reconnection, while the latter include
the process of reconnection diffusion induced by turbulent reconnection, the
acceleration of energetic particles, bursts of turbulent reconnection related
to black hole sources as well as gamma ray bursts. Finally, we explain why
turbulent reconnection cannot be explained by turbulent resistivity or derived
through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection -
Concepts and Applications", editors W. Gonzalez, E. N. Parke
State of the climate in 2013
In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved
- …