33 research outputs found
Momentum transfer using chirped standing wave fields: Bragg scattering
We consider momentum transfer using frequency-chirped standing wave fields.
Novel atom-beam splitter and mirror schemes based on Bragg scattering are
presented. It is shown that a predetermined number of photon momenta can be
transferred to the atoms in a single interaction zone.Comment: 4 pages, 3 figure
Three-body non-additive forces between spin-polarized alkali atoms
Three-body non-additive forces in systems of three spin-polarized alkali
atoms (Li, Na, K, Rb and Cs) are investigated using high-level ab initio
calculations. The non-additive forces are found to be large, especially near
the equilateral equilibrium geometries. For Li, they increase the three-atom
potential well depth by a factor of 4 and reduce the equilibrium interatomic
distance by 0.9 A. The non-additive forces originate principally from chemical
bonding arising from sp mixing effects.Comment: 4 pages, 3 figures (in 5 files
Deconstructing Decoherence
The study of environmentally induced superselection and of the process of
decoherence was originally motivated by the search for the emergence of
classical behavior out of the quantum substrate, in the macroscopic limit. This
limit, and other simplifying assumptions, have allowed the derivation of
several simple results characterizing the onset of environmentally induced
superselection; but these results are increasingly often regarded as a complete
phenomenological characterization of decoherence in any regime. This is not
necessarily the case: The examples presented in this paper counteract this
impression by violating several of the simple ``rules of thumb''. This is
relevant because decoherence is now beginning to be tested experimentally, and
one may anticipate that, in at least some of the proposed applications (e.g.,
quantum computers), only the basic principle of ``monitoring by the
environment'' will survive. The phenomenology of decoherence may turn out to be
significantly different.Comment: 13 two-column pages, 3 embedded figure
High-precision determination of transition amplitudes of principal transitions in Cs from van der Waals coefficient C_6
A method for determination of atomic dipole matrix elements of principal
transitions from the value of dispersion coefficient C_6 of molecular
potentials correlating to two ground-state atoms is proposed. The method is
illustrated on atomic Cs using C_6 deduced from high-resolution Feshbach
spectroscopy. The following reduced matrix elements are determined < 6S_{1/2}
|| D || 6P_{1/2} > =4.5028(60) |e| a0 and
=6.3373(84) |e| a0 (a0= 0.529177 \times 10^{-8} cm.) These matrix elements are
consistent with the results of the most accurate direct lifetime measurements
and have a similar uncertainty. It is argued that the uncertainty can be
considerably reduced as the coefficient C_6 is constrained further.Comment: 4 pages; 3 fig
