37 research outputs found

    Importance sampling for polarization-mode dispersion

    Full text link

    A mean field approach for simulating wavelength-division multiplexed systems

    Full text link

    Statistics of soliton-bearing systems with additive noise

    Full text link
    We present a consistent method to calculate the probability distribution of soliton parameters in systems with additive noise. Even though a weak noise is considered, we are interested in probabilities of large fluctuations (generally non-Gaussian) which are beyond perturbation theory. Our method is a further development of the instanton formalism (method of optimal fluctuation) based on a saddle-point approximation in the path integral. We first solve a fundamental problem of soliton statistics governing by noisy Nonlinear Schr\"odinger Equation (NSE). We then apply our method to optical soliton transmission systems using signal control elements (filters, amplitude and phase modulators).Comment: 4 pages. Submitted to PR

    Statistical analysis of the performance of PMD compensators using multiple importance sampling

    Full text link

    Trapping polarization of light in nonlinear optical fibers: An ideal Raman polarizer

    Get PDF
    The main subject of this contribution is the all-optical control over the state of polarization (SOP) of light, understood as the control over the SOP of a signal beam by the SOP of a pump beam. We will show how the possibility of such control arises naturally from a vectorial study of pump-probe Raman interactions in optical fibers. Most studies on the Raman effect in optical fibers assume a scalar model, which is only valid for high-PMD fibers (here, PMD stands for the polarization-mode dispersion). Modern technology enables manufacturing of low-PMD fibers, the description of which requires a full vectorial model. Within this model we gain full control over the SOP of the signal beam. In particular we show how the signal SOP is pulled towards and trapped by the pump SOP. The isotropic symmetry of the fiber is broken by the presence of the polarized pump. This trapping effect is used in experiments for the design of new nonlinear optical devices named Raman polarizers. Along with the property of improved signal amplification, these devices transform an arbitrary input SOP of the signal beam into one and the same SOP towards the output end. This output SOP is fully controlled by the SOP of the pump beam. We overview the sate-of-the-art of the subject and introduce the notion of an "ideal Raman polarizer"

    Quadratic solitons as nonlocal solitons

    Get PDF
    We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for novel analytical solutions and the prediction of novel bound states of quadratic solitons.Comment: 4 pages, 3 figure
    corecore