204 research outputs found

    Density Matrix in Quantum Mechanics and Distinctness of Ensembles Having the Same Compressed Density Matrix

    Full text link
    We clarify different definitions of the density matrix by proposing the use of different names, the full density matrix for a single-closed quantum system, the compressed density matrix for the averaged single molecule state from an ensemble of molecules, and the reduced density matrix for a part of an entangled quantum system, respectively. We show that ensembles with the same compressed density matrix can be physically distinguished by observing fluctuations of various observables. This is in contrast to a general belief that ensembles with the same compressed density matrix are identical. Explicit expression for the fluctuation of an observable in a specified ensemble is given. We have discussed the nature of nuclear magnetic resonance quantum computing. We show that the conclusion that there is no quantum entanglement in the current nuclear magnetic resonance quantum computing experiment is based on the unjustified belief that ensembles having the same compressed density matrix are identical physically. Related issues in quantum communication are also discussed.Comment: 26 pages. To appear in Foundations of Physics, 36 (8), 200

    Quantum feedback with weak measurements

    Get PDF
    The problem of feedback control of quantum systems by means of weak measurements is investigated in detail. When weak measurements are made on a set of identical quantum systems, the single-system density matrix can be determined to a high degree of accuracy while affecting each system only slightly. If this information is fed back into the systems by coherent operations, the single-system density matrix can be made to undergo an arbitrary nonlinear dynamics, including for example a dynamics governed by a nonlinear Schr\"odinger equation. We investigate the implications of such nonlinear quantum dynamics for various problems in quantum control and quantum information theory, including quantum computation. The nonlinear dynamics induced by weak quantum feedback could be used to create a novel form of quantum chaos in which the time evolution of the single-system wave function depends sensitively on initial conditions.Comment: 11 pages, TeX, replaced to incorporate suggestions of Asher Pere

    Orbital-selective Mott transitions: Heavy fermions and beyond

    Full text link
    Quantum phase transitions in metals are often accompanied by violations of Fermi liquid behavior in the quantum critical regime. Particularly fascinating are transitions beyond the Landau-Ginzburg-Wilson concept of a local order parameter. The breakdown of the Kondo effect in heavy-fermion metals constitutes a prime example of such a transition. Here, the strongly correlated f electrons become localized and disappear from the Fermi surface, implying that the transition is equivalent to an orbital-selective Mott transition, as has been discussed for multi-band transition-metal oxides. In this article, available theoretical descriptions for orbital-selective Mott transitions will be reviewed, with an emphasis on conceptual aspects like the distinction between different low-temperature phases and the structure of the global phase diagram. Selected results for quantum critical properties will be listed as well. Finally, a brief overview is given on experiments which have been interpreted in terms of orbital-selective Mott physics.Comment: 29 pages, 4 figs, mini-review prepared for a special issue of JLT

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Crowd computing as a cooperation problem: an evolutionary approach

    Get PDF
    Cooperation is one of the socio-economic issues that has received more attention from the physics community. The problem has been mostly considered by studying games such as the Prisoner's Dilemma or the Public Goods Game. Here, we take a step forward by studying cooperation in the context of crowd computing. We introduce a model loosely based on Principal-agent theory in which people (workers) contribute to the solution of a distributed problem by computing answers and reporting to the problem proposer (master). To go beyond classical approaches involving the concept of Nash equilibrium, we work on an evolutionary framework in which both the master and the workers update their behavior through reinforcement learning. Using a Markov chain approach, we show theoretically that under certain----not very restrictive-conditions, the master can ensure the reliability of the answer resulting of the process. Then, we study the model by numerical simulations, finding that convergence, meaning that the system reaches a point in which it always produces reliable answers, may in general be much faster than the upper bounds given by the theoretical calculation. We also discuss the effects of the master's level of tolerance to defectors, about which the theory does not provide information. The discussion shows that the system works even with very large tolerances. We conclude with a discussion of our results and possible directions to carry this research further.This work is supported by the Cyprus Research Promotion Foundation grant TE/HPO/0609(BE)/05, the National Science Foundation (CCF-0937829, CCF-1114930), Comunidad de Madrid grant S2009TIC-1692 and MODELICO-CM, Spanish MOSAICO, PRODIEVO and RESINEE grants and MICINN grant TEC2011-29688-C02-01, and National Natural Science Foundation of China grant 61020106002.Publicad
    corecore