9 research outputs found

    Solar Neutrino Constraints on the BBN Production of Li

    Full text link
    Using the recent WMAP determination of the baryon-to-photon ratio, 10^{10} \eta = 6.14 to within a few percent, big bang nucleosynthesis (BBN) calculations can make relatively accurate predictions of the abundances of the light element isotopes which can be tested against observational abundance determinations. At this value of \eta, the Li7 abundance is predicted to be significantly higher than that observed in low metallicity halo dwarf stars. Among the possible resolutions to this discrepancy are 1) Li7 depletion in the atmosphere of stars; 2) systematic errors originating from the choice of stellar parameters - most notably the surface temperature; and 3) systematic errors in the nuclear cross sections used in the nucleosynthesis calculations. Here, we explore the last possibility, and focus on possible systematic errors in the He3(\alpha,\gamma)Be7 reaction, which is the only important Li7 production channel in BBN. The absolute value of the cross section for this key reaction is known relatively poorly both experimentally and theoretically. The agreement between the standard solar model and solar neutrino data thus provides additional constraints on variations in the cross section (S_{34}). Using the standard solar model of Bahcall, and recent solar neutrino data, we can exclude systematic S_{34} variations of the magnitude needed to resolve the BBN Li7 problem at > 95% CL. Additional laboratory data on He3(\alpha,\gamma)Be7 will sharpen our understanding of both BBN and solar neutrinos, particularly if care is taken in determining the absolute cross section and its uncertainties. Nevertheless, it already seems that this ``nuclear fix'' to the Li7 BBN problem is unlikely; other possible solutions are briefly discussed.Comment: 21 pages, 3 ps figure

    Boron in the very metal-poor star BD-13 3442

    Get PDF
    The Goddard High Resolution Spectrograph (GHRS) of the Hubble Space Telescope (HST) has been used to observe the boron 2500 °A region of BD −13 3442. At a metallicity of [Fe/H]=−3.00 this is the most metal- poor star ever observed for B. Nearly 26 hours of exposure time resulted in a detection. Spectrum synthesis using the latest Kurucz model atmospheres yields an LTE boron abundance of log ǫ(B)= +0.01 ± 0.20. This value is con- sistent with the linear relation of slope 1.0 between log ǫ(BLTE) and [Fe/H] found for 10 halo and disk stars by Duncan et al. (1997). Using the NLTE correction of Kisel- man & Carlsson (1996), the NLTE boron abundance is log ǫ(B)= +0.93 ± 0.20. This is also consistent with the NLTE relation determined by Duncan et al. (1997) where the slope of log ǫ(BNLTE) vs. [Fe/H] is 0.7. These data support a model in which most production of B and Be comes from the spallation of energetic C and O nuclei onto protons and He nuclei, probably in the vicinity of massive supernovae in star-forming regions, rather than the spallation of cosmic ray protons and alpha particles onto CNO nuclei in the general interstellar medium.Peer reviewe

    The origin and abundances of the chemical elements revisited

    No full text
    The basic scheme of nucleosynthesis (building of heavy elements from light ones) has held up very well since it was first proposed more than 30 years ago by E.M. Burbidge, G.R. Burbidge, A.G.W. Cameron, W.A. Fowler, and F. Hoyle. Significant advances in the intervening years include (a) observations of elemental and a few isotopic ratios in many more extrasolar-system sites, including metal-poor dwarf irregular galaxies, where very little has happened, and supernovae and their remnants, where a great deal has happened, (b) recognition of the early universe as good for making all the elements up to helium, (c) resolution of heavy element burning in stars into separate carbon, neon, oxygen, and silicon burning, with fine tuning of the resulting abundances by explosive nucleosynthesis in outgoing supernova shock waves, (d) clarification of the role of Type I supernovae, (e) concordance between elements produced in short-lived and long-lived stars with those that increased quickly and slowly over the history of the galaxy, and (f) calibration of calculations of the evolution and explosion of massive stars against the detailed observations of SN 1987A. The discussion presupposes a reader (a) with some prior knowledge of astronomy at the level of recognizing what is meant by an A star and an AGB star and (b) with at least a mild interest in how we got to where we currently are. © 1991 Springer-Verlag

    The origin and abundances of the chemical elements revisited

    No full text

    Bibliographische Notizen und Mitteilungen

    No full text
    corecore