114 research outputs found

    Curcumin reduces development of seizurelike events in the hippocampal-entorhinal cortex slice culture model for epileptogenesis

    Get PDF
    OBJECTIVE Inhibition of the mammalian target of rapamycin (mTOR) pathway could be antiepileptogenic in temporal lobe epilepsy (TLE), possibly via anti-inflammatory actions. We studied effects of the mTOR inhibitor rapamycin and the anti-inflammatory compound curcumin-also reported to inhibit the mTOR pathway-on epileptogenesis and inflammation in an in vitro organotypic hippocampal-entorhinal cortex slice culture model. METHODS Brain slices containing hippocampus and entorhinal cortex were obtained from 6-day-old rat pups and maintained in culture for up to 3 weeks. Rapamycin or curcumin was added to the culture medium from day 2 in vitro onward. Electrophysiological recordings revealed epileptiformlike activity that developed over 3 weeks. RESULTS In week 3, spontaneous seizurelike events (SLEs) could be detected using whole cell recordings from CA1 principal neurons. The percentage of recorded CA1 neurons displaying SLEs was lower in curcumin-treated slice cultures compared to vehicle-treated slices (25.8% vs 72.5%), whereas rapamycin did not reduce SLE occurrence significantly (52%). Western blot for phosphorylated-S6 (pS6) and phosphorylated S6K confirmed that rapamycin inhibited the mTOR pathway, whereas curcumin only lowered pS6 expression at one phosphorylation site. Real-time quantitative polymerase chain reaction results indicated a trend toward lower expression of inflammatory markers IL-1β and IL-6 and transforming growth factor β after 3 weeks of treatment with rapamycin and curcumin compared to vehicle. SIGNIFICANCE Our results show that curcumin suppresses SLEs in the combined hippocampal-entorhinal cortex slice culture model and suggest that its antiepileptogenic effects should be further investigated in experimental models of TLE

    Anomalous Transient Current in Nonuniform Semiconductors

    Full text link
    Nonequilibrium processes in semiconductors are considered with highly nonuniform initial densities of charge carriers. It is shown that there exist such distributions of charge densities under which the electric current through a sample displays quite abnormal behaviour flowing against the applied voltage. The appearance of this negative electric current is a transient phenomenon occurring at the initial stage of the process. After this anomalous negative fluctuation, the electric current becomes normal, i.e. positive as soon as the charge density becomes more uniform. Several possibilities for the practical usage of this effect are suggested.Comment: 1 file, 11 pages, RevTex, no figure

    Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and in vivo - in search of potential anti-epileptogenic strategies for temporal lobe epilepsy

    Get PDF
    Background: Previous studies in various rodent epilepsy models have suggested that mammalian target of rapamycin (mTOR) inhibition with rapamycin has anti-epileptogenic potential. Since treatment with rapamycin produces unwanted side effects, there is growing interest to study alternatives to rapamycin as anti-epileptogenic drugs. Therefore, we investigated curcumin, the main component of the natural spice turmeric. Curcumin is known to have anti-inflammatory and anti-oxidant effects and has been reported to inhibit the mTOR pathway. These properties make it a potential anti-epileptogenic compound and an alternative for rapamycin. Methods: To study the anti-epileptogenic potential of curcumin compared to rapamycin, we first studied the effects of both compounds on mTOR activation, inflammation, and oxidative stress in vitro, using cell cultures of human fetal astrocytes and the neuronal cell line SH-SY5Y. Next, we investigated the effects of rapamycin and intracerebrally applied curcumin on status epilepticus (SE)-induced inflammation and oxidative stress in hippocampal tissue, during early stages of epileptogenesis in the post-electrical SE rat model for temporal lobe epilepsy (TLE). Results: Rapamycin, but not curcumin, suppressed mTOR activation in cultured astrocytes. Instead, curcumin suppressed the mitogen-activated protein kinase (MAPK) pathway. Quantitative real-time PCR analysis revealed that curcumin, but not rapamycin, reduced the levels of inflammatory markers IL-6 and COX-2 in cultured astrocytes that were challenged with IL-1β. In SH-SY5Y cells, curcumin reduced reactive oxygen species (ROS) levels, suggesting anti-oxidant effects. In the post-SE rat model, however, treatment with rapamycin or curcumin did not suppress the expression of inflammatory and oxidative stress markers 1week after SE. Conclusions: These results indicate anti-inflammatory and anti-oxidant properties of curcumin, but not rapamycin, in vitro. Intracerebrally applied curcumin modified the MAPK pathway in vivo at 1week after SE but failed to produce anti-inflammatory or anti-oxidant effects. Future studies should be directed to increasing the bioavailability of curcumin (or related compounds) in the brain to assess its anti-epileptogenic potential in vivo

    Anomalous crossover between thermal and shot noise in macroscopic diffusive conductors

    Get PDF
    We predict the existence of an anomalous crossover between thermal and shot noise in macroscopic diffusive conductors. We first show that, besides thermal noise, these systems may also exhibit shot noise due to fluctuations of the total number of carriers in the system. Then we show that at increasing currents the crossover between the two noise behaviors is anomalous, in the sense that the low frequency current spectral density displays a region with a superlinear dependence on the current up to a cubic law. The anomaly is due to the non-trivial coupling in the presence of the long range Coulomb interaction among the three time scales relevant to the phenomenon, namely, diffusion, transit and dielectric relaxation time.Comment: 4 pages, 2 figure

    The prognostic and predictive value of Tregs and tumor immune subtypes in postmenopausal, hormone receptor-positive breast cancer patients treated with adjuvant endocrine therapy: a Dutch TEAM study analysis

    Get PDF
    Evidence exists for an immunomodulatory effect of endocrine therapy in hormone receptor-positive (HR+ve) breast cancer (BC). Therefore, the aim of this study was to define the prognostic and predictive value of tumor immune markers and the tumor immune profile in HR+ve BC, treated with different endocrine treatment regimens. 2,596 Dutch TEAM patients were treated with 5 years of adjuvant hormonal treatment, randomly assigned to different regimens: 5 years of exemestane or sequential treatment (2.5 years of tamoxifen–2.5 years of exemestane). Immunohistochemistry was performed for HLA class I, HLA-E, HLA-G, and FoxP3. Tumor immune subtypes (IS) (low, intermediate & high immune susceptible) were determined by the effect size of mono-immune markers on relapse rate. Patients on sequential treatment with high level of tumor-infiltrating FoxP3+ cells had significant (p = 0.019, HR 0.729, 95 % CI 0.560–0.949) better OS. Significant interaction for endocrine treatment and FoxP3+ presence was seen (OS p < 0.001). Tumor IS were only of prognostic value for the sequentially endocrine-treated patients (RFP: p = 0.035, HR intermediate IS 1.420, 95 % CI 0.878–2.297; HR low IS 1.657, 95 % CI 1.131–2.428; BCSS: p = 0.002, HR intermediate IS 2.486, 95 % CI 1.375–4.495; HR low IS 2.422, 95 % CI 1.439–4.076; and OS: p = 0.005, HR intermediate IS 1.509, 95 % CI 0.950–2.395; HR low IS 1.848, 95 % CI 1.277–2.675). Tregs and the tumor IS presented in this study harbor prognostic value for sequentially endocrine-treated HR+ve postmenopausal BC patients, but not for solely exemestane-treated patients. Therefore, these markers could be used as a clinical risk stratification tool to guide adjuvant treatment in this BC population
    • …
    corecore