2,556 research outputs found
Microstructure modelling of hot deformation of Al–1%Mg alloy
This study presents the application of the finite elementmethod and intelligent systems techniques to the
prediction of microstructural mapping for aluminium alloys. Here, the material within each finite element
is defined using a hybrid model. The hybrid model is based on neuro-fuzzy and physically based components
and it has been combined with the finite element technique. The model simulates the evolution of
the internal state variables (i.e. dislocation density, subgrain size and subgrain boundary misorientation)
and their effect on the recrystallisation behaviour of the stock. This paper presents the theory behind
the model development, the integration between the numerical techniques, and the application of the
technique to a hot rolling operation using aluminium, 1 wt% magnesium alloy. Furthermore, experimental
data from plane strain compression (PSC) tests and rolling are used to validate the modelling outcome.
The results show that the recrystallisation kinetics agree well with the experimental results for different
annealing times. This hybrid approach has proved to be more accurate than conventional methods using empirical equations
Information-sharing outage-probability analysis of vehicular networks
In vehicular networks, information dissemination/sharing among vehicles is of salient importance. Although diverse mechanisms have been proposed in the existing literature, the related information credibility issues have not been investigated. Against this background, in this paper, we propose a credible information-sharing mechanism capable of ensuring that the vehicles do share genuine road traffic information (RTI). We commence with the outage-probability analysis of information sharing in vehicular networks under both a general scenario and a specific highway scenario. Closed-form expressions are derived for both scenarios, given the specific channel settings. Based on the outage-probability expressions, we formulate the utility of RTI sharing and design an algorithm for promoting the sharing of genuine RTI. To verify our theoretical analysis and the proposed mechanism, we invoke a real-world dataset containing the locations of Beijing taxis to conduct our simulations. Explicitly, our simulation results show that the spatial distribution of the vehicles obeys a Poisson point process (PPP), and our proposed credible RTI sharing mechanism is capable of ensuring that all vehicles indeed do share genuine RTI with each other
Parity Violation in Neutron Capture Reactions
In the last decade, the scattering of polarized neutrons on compound nucleus
resonances proved to be a powerful experimental technique for probing nuclear
parity violation. Longitudinal analyzing powers in neutron transmission
measurements on p-wave resonances in nuclei such as La and Th
were found to be as large as 10%. Here we examine the possibilities of carrying
out a parallel program to measure asymmetries in the ) reaction on
these same compound nuclear resonances. Symmetry-violating ) studies
can also show asymmetries as large as 10%, and have the advantage over
transmission experiments of allowing parity-odd asymmetries in several
different gamma-decay branches from the same resonance. Thus, studies of parity
violation in the reaction using high efficiency germanium
detectors at the Los Alamos Lujan facility, for example, could determine the
parity-odd nucleon-nucleon matrix elements in complex nuclei with high
accuracy. Additionally, simultaneous studies of the E1 and matrix
elements invol ved in these decays could be used to help constrain the
statistical theory of parity non-conservation in compound nuclei.Comment: 10 pages, 1 figur
Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis
Idiopathic pulmonary fibrosis (IPF) is a fatal disease that is unresponsive to current therapies and characterized by excessive collagen deposition and subsequent fibrosis. While inflammatory cytokines, including interleukin (IL)-6, are elevated in IPF, the molecular mechanisms that underlie this disease are incompletely understood, although the development of fibrosis is believed to depend on canonical transforming growth factor (TGF)-β signalling. We examined bleomycin-induced inflammation and fibrosis in mice carrying a mutation in the shared IL-6 family receptor gp130. Using genetic complementation, we directly correlate the extent of IL-6-mediated, excessive Stat3 activity with inflammatory infiltrates in the lung and the severity of fibrosis in corresponding gp130757F mice. The extent of fibrosis was attenuated in B lymphocyte-deficient gp130757F;µMT−/− compound mutant mice, but fibrosis still occurred in their Smad3−/− counterparts consistent with the capacity of excessive Stat3 activity to induce collagen 1α1 gene transcription independently of canonical TGF-β/Smad3 signalling. These findings are of therapeutic relevance, since we confirmed abundant STAT3 activation in fibrotic lungs from IPF patients and showed that genetic reduction of Stat3 protected mice from bleomycin-induced lung fibrosis
Tunneling spectra of submicron BiSrCaCuO intrinsic Josephson junctions: evolution from superconducting gap to pseudogap
Tunneling spectra of near optimally doped, submicron
BiSrCaCuO intrinsic Josephson junctions are presented,
and examined in the region where the superconducting gap evolves into
pseudogap. The spectra are analyzed using a self-energy model, proposed by
Norman {\it et al.}, in which both quasiparticle scattering rate and
pair decay rate are considered. The density of states derived
from the model has the familiar Dynes' form with a simple replacement of
by = ( + )/2. The
parameter obtained from fitting the experimental spectra shows a roughly linear
temperature dependence, which puts a strong constraint on the relation between
and . We discuss and compare the Fermi arc behavior
in the pseudogap phase from the tunneling and angle-resolved photoemission
spectroscopy experiments. Our results indicate an excellent agreement between
the two experiments, which is in favor of the precursor pairing view of the
pseudogap.Comment: 7 pages, 6 figure
Optimal control theory for unitary transformations
The dynamics of a quantum system driven by an external field is well
described by a unitary transformation generated by a time dependent
Hamiltonian. The inverse problem of finding the field that generates a specific
unitary transformation is the subject of study. The unitary transformation
which can represent an algorithm in a quantum computation is imposed on a
subset of quantum states embedded in a larger Hilbert space. Optimal control
theory (OCT) is used to solve the inversion problem irrespective of the initial
input state. A unified formalism, based on the Krotov method is developed
leading to a new scheme. The schemes are compared for the inversion of a
two-qubit Fourier transform using as registers the vibrational levels of the
electronic state of Na. Raman-like transitions through the
electronic state induce the transitions. Light fields are found
that are able to implement the Fourier transform within a picosecond time
scale. Such fields can be obtained by pulse-shaping techniques of a femtosecond
pulse. Out of the schemes studied the square modulus scheme converges fastest.
A study of the implementation of the qubit Fourier transform in the Na
molecule was carried out for up to 5 qubits. The classical computation effort
required to obtain the algorithm with a given fidelity is estimated to scale
exponentially with the number of levels. The observed moderate scaling of the
pulse intensity with the number of qubits in the transformation is
rationalized.Comment: 32 pages, 6 figure
Nuclear Parity-Violation in Effective Field Theory
We reformulate the analysis of nuclear parity-violation (PV) within the
framework of effective field theory (EFT). To order Q, the PV nucleon-nucleon
(NN) interaction depends on five a priori unknown constants that parameterize
the leading-order, short-range four-nucleon operators. When pions are included
as explicit degrees of freedom, the potential contains additional medium- and
long-range components parameterized by PV piNN couplings. We derive the form of
the corresponding one- and two-pion-exchange potentials. We apply these
considerations to a set of existing and prospective PV few-body measurements
that may be used to determine the five independent low-energy constants
relevant to the pionless EFT and the additional constants associated with
dynamical pions. We also discuss the relationship between the conventional
meson-exchange framework and the EFT formulation, and argue that the latter
provides a more general and systematic basis for analyzing nuclear PV.Comment: 67 Page Latex file with typos correcte
Vortex structure in d-density wave scenario of pseudogap
We investigate the vortex structure assuming the d-density wave scenario of
the pseudogap. We discuss the profiles of the order parameters in the vicinity
of the vortex, effective vortex charge and the local density of states. We find
a pronounced modification of these quantities when compared to a purely
superconducting case. Results have been obtained for a clean system as well as
in the presence of a nonmagnetic impurity. We show that the competition between
superconductivity and the density wave may explain some experimental data
recently obtained for high-temperature superconductors. In particular, we show
that the d-density wave scenario explains the asymmetry of the gap observed in
the vicinity of the vortex core.Comment: 8 pages, 10 figure
Pentaquark baryon production from photon-neuteron reactions
Extending the hadronic Lagrangians that we recently introduced for studying
pentaquark baryon production from meson-proton, proton-proton, and
photon-proton reactions near threshold to include the anomalous interaction
between and , we evaluate the cross section for
production from photon-neutron reactions, in which the was first
detected in the SPring-8 experiment in Japan and the CLAS experiment at Thomas
Jefferson National Laboratory. With empirical coupling constants and form
factors, and assuming that the decay width of is 20 MeV, the
predicted cross section is found to have a peak value of about 280 nb, which is
substantially larger than that for production from photon-proton
reactions.Comment: 13 pages, 6 figure
Finite Element Convergence for the Joule Heating Problem with Mixed Boundary Conditions
We prove strong convergence of conforming finite element approximations to
the stationary Joule heating problem with mixed boundary conditions on
Lipschitz domains in three spatial dimensions. We show optimal global
regularity estimates on creased domains and prove a priori and a posteriori
bounds for shape regular meshes.Comment: Keywords: Joule heating problem, thermistors, a posteriori error
analysis, a priori error analysis, finite element metho
- …