1,386 research outputs found
Anterior Hippocampus and Goal-Directed Spatial Decision Making
Contains fulltext :
115487.pdf (publisher's version ) (Open Access
Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming
In this paper an optimisation algorithm based on Differential Dynamic Programming is applied to the design of rendezvous and fly-by trajectories to near Earth objects. Differential dynamic programming is a successive approximation technique that computes a feedback control law in correspondence of a fixed number of decision times. In this way the high dimensional problem characteristic of low-thrust optimisation is reduced into a series of small dimensional problems. The proposed method exploits the stage-wise approach to incorporate an adaptive refinement of the discretisation mesh within the optimisation process. A particular interpolation technique was used to preserve the feedback nature of the control law, thus improving robustness against some approximation errors introduced during the adaptation process. The algorithm implements global variations of the control law, which ensure a further increase in robustness. The results presented show how the proposed approach is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution
From Fractional Chern Insulators to a Fractional Quantum Spin Hall Effect
We investigate the algebraic structure of flat energy bands a partial filling
of which may give rise to a fractional quantum anomalous Hall effect (or a
fractional Chern insulator) and a fractional quantum spin Hall effect. Both
effects arise in the case of a sufficiently flat energy band as well as a
roughly flat and homogeneous Berry curvature, such that the global Chern
number, which is a topological invariant, may be associated with a local
non-commutative geometry. This geometry is similar to the more familiar
situation of the fractional quantum Hall effect in two-dimensional electron
systems in a strong magnetic field.Comment: 8 pages, 3 figure; published version with labels in Figs. 2 and 3
correcte
Study of the Hindrance Effect in Sub-barrier Fusion Reactions
We have measured the fusion cross sections of the 12C(13C, p)24Na reaction
through off-line measurement of the beta-decay of 24Na using the beta-gamma
coincidence method. Our new measurements in the energy range of Ec.m. = 2.6-3.0
MeV do not show an obvious S-factor maximum but a plateau. Comparison between
this work and various models is presented.Comment: 3 pages, 3 figures, Talk at the "10th International Conference on
Nucleus-Nucleus Collisions", Beijing, 16-21 August 200
Fast coarsening in unstable epitaxy with desorption
Homoepitaxial growth is unstable towards the formation of pyramidal mounds
when interlayer transport is reduced due to activation barriers to hopping at
step edges. Simulations of a lattice model and a continuum equation show that a
small amount of desorption dramatically speeds up the coarsening of the mound
array, leading to coarsening exponents between 1/3 and 1/2. The underlying
mechanism is the faster growth of larger mounds due to their lower evaporation
rate.Comment: 4 pages, 4 PostScript figure
W=0 Pairing in Carbon Nanotubes away from Half Filling
We use the Hubbard Hamiltonian on the honeycomb lattice to represent the
valence bands of carbon single-wall nanotubes. A detailed symmetry
analysis shows that the model allows W=0 pairs which we define as two-body
singlet eigenstates of with vanishing on-site repulsion. By means of a
non-perturbative canonical transformation we calculate the effective
interaction between the electrons of a W=0 pair added to the interacting ground
state. We show that the dressed W=0 pair is a bound state for resonable
parameter values away from half filling. Exact diagonalization results for the
(1,1) nanotube confirm the expectations. For nanotubes of length ,
the binding energy of the pair depends strongly on the filling and decreases
towards a small but nonzero value as . We observe the existence
of an optimal doping when the number of electrons per C atom is in the range
1.21.3, and the binding energy is of the order of 0.1 1 meV.Comment: 16 pages, 6 figure
Lyapunov Potential Description for Laser Dynamics
We describe the dynamical behavior of both class A and class B lasers in
terms of a Lyapunov potential. For class A lasers we use the potential to
analyze both deterministic and stochastic dynamics. In the stochastic case it
is found that the phase of the electric field drifts with time in the steady
state. For class B lasers, the potential obtained is valid in the absence of
noise. In this case, a general expression relating the period of the relaxation
oscillations to the potential is found. We have included in this expression the
terms corresponding to the gain saturation and the mean value of the
spontaneously emitted power, which were not considered previously. The validity
of this expression is also discussed and a semi-empirical relation giving the
period of the relaxation oscillations far from the stationary state is proposed
and checked against numerical simulations.Comment: 13 pages (including 7 figures) LaTeX file. To appear in Phys Rev.A
(June 1999
A study of charged kappa in
Based on events collected by BESII, the decay
is studied. In the invariant mass
spectrum recoiling against the charged , the charged
particle is found as a low mass enhancement. If a Breit-Wigner function of
constant width is used to parameterize the kappa, its pole locates at MeV/. Also in this channel,
the decay is observed for the first time.
Its branching ratio is .Comment: 14 pages, 4 figure
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
- …
