273 research outputs found
Atomistic Studies of Defect Nucleation during Nanoindentation of Au (001)
Atomistic studies are carried out to investigate the formation and evolution
of defects during nanoindentation of a gold crystal. The results in this
theoretical study complement the experimental investigations [J. D. Kiely and
J. E. Houston, Phys. Rev. B, v57, 12588 (1998)] extremely well. The defects are
produced by a three step mechanism involving nucleation, glide and reaction of
Shockley partials on the {111} slip planes noncoplanar with the indented
surface. We have observed that slip is in the directions along which the
resolved shear stress has reached the critical value of approximately 2 GPa.
The first yield occurs when the shear stresses reach this critical value on all
the {111} planes involved in the formation of the defect. The phenomenon of
strain hardening is observed due to the sessile stair-rods produced by the
zipping of the partials. The dislocation locks produced during the second yield
give rise to permanent deformation after retraction.Comment: 11 pages, 13 figures, submitted to Physical Review
Multi-Channel Kondo Necklace
A multi--channel generalization of Doniach's Kondo necklace model is
formulated, and its phase diagram studied in the mean--field approximation. Our
intention is to introduce the possible simplest model which displays some of
the features expected from the overscreened Kondo lattice. The conduction
electron channels are represented by sets of pseudospins \vt_{j}, , which are all antiferromagnetically coupled to a periodic array of
|\vs|=1/2 spins. Exploiting permutation symmetry in the channel index
allows us to write down the self--consistency equation for general . For
, we find that the critical temperature is rising with increasing Kondo
interaction; we interpret this effect by pointing out that the Kondo coupling
creates the composite pseudospin objects which undergo an ordering transition.
The relevance of our findings to the underlying fermionic multi--channel
problem is discussed.Comment: 29 pages (2 figures upon request from [email protected]), LATEX,
submitted for publicatio
- …