1,520 research outputs found
Using simulation to understand the structure and properties of hydrated amorphous calcium carbonate
We report results from studies using four different protocols to prepare hydrated amorphous calcium carbonate, ranging from random initial structures to melting hydrated mineral structures. All protocols give good agreement with experimental X-ray structure factors. However, the thermodynamic properties, ion coordination environments, and distribution of water for the structures produced by the protocols show statistically significant variation depending on the protocols used. We discuss the diffusivity of water through the various structures and its relation to experiments. We show that one protocol (based on melting ikaite) gives a structure where the water is mobile, due to the presence of porosity in the amorphous structure. We conclude that our models of hydrated amorphous calcium carbonate do give a range of behaviour that resembles that observed experimentally, although the variation is less marked in the simulations than in experiments
Product Groups, Discrete Symmetries, and Grand Unification
We study grand unified theories based on an SU(5)xSU(5) gauge group in which
the GUT scale, M_{GUT}, is the VEV of an exact or approximate modulus, and in
which fast proton decay is avoided through a combination of a large triplet
mass and small triplet couplings. These features are achieved by discrete
symmetries. In many of our models, M_{GUT} is generated naturally by the
balance of higher dimension terms that lift the GUT modulus potential, and soft
supersymmetry breaking masses. The theories often lead to interesting patterns
of quark and lepton masses. We also discuss some distinctions between grand
unified theories and string unification.Comment: 23 pages; no figures; revtex
Hadron yields and spectra in Au+Au collisions at the AGS
Inclusive double differential multiplicities and rapidity density
distributions of hadrons are presented for 10.8 A GeV/c Au+Au collisions as
measured at the AGS by the E877 collaboration. The results indicate that large
amounts of stopping and collective transverse flow effects are present. The
data are also compared to the results from the lighter Si+Al system.Comment: 12 pages, latex, 10 figures, submitted to Nuclear Physics A (Quark
Matter 1996 Proceedings
Scalar perturbation spectra from warm inflation
We present a numerical integration of the cosmological scalar perturbation
equations in warm inflation. The initial conditions are provided by a
discussion of the thermal fluctuations of an inflaton field and thermal
radiation using a combination of thermal field theory and thermodynamics. The
perturbation equations include the effects of a damping coefficient
and a thermodynamic potential . We give an analytic expression for the
spectral index of scalar fluctuations in terms of a new slow-roll parameter
constructed from . A series of toy models, inspired by spontaneous
symmetry breaking and a known form of the damping coefficient, lead to a
spectrum with on large scales and on small scales.Comment: 12 pages, 5 figures, RevTeX 4, revised with extra figure
Family Unification in Five and Six Dimensions
In family unification models, all three families of quarks and leptons are
grouped together into an irreducible representation of a simple gauge group,
thus unifying the Standard Model gauge symmetries and a gauged family symmetry.
Large orthogonal groups, and the exceptional groups and have been
much studied for family unification. The main theoretical difficulty of family
unification is the existence of mirror families at the weak scale. It is shown
here that family unification without mirror families can be realized in simple
five-dimensional and six-dimensional orbifold models similar to those recently
proposed for SU(5) and SO(10) grand unification. It is noted that a family
unification group that survived to near the weak scale and whose coupling
extrapolated to high scales unified with those of the Standard model would be
evidence accessible in principle at low energy of the existence of small
(Planckian or GUT-scale) extra dimensions.Comment: 13 pages, 2 figures, minor corrections, references adde
The influence of providing perches and string on activity levels, fearfulness and leg health in commercial broiler chickens
The aim of this study was to assess the effect of providing environmental enrichment in the form of perches and string on the behaviour and welfare of commercial broiler chickens. Houses containing ~23 000 broiler chickens were assigned to one of four treatments in a 2×2 factorial design. Treatments involved two levels of access to perches (P) (present (24/house) ‘+P’ or absent ‘−P’) and two levels of access to string (S) (present (24/house) ‘+S’ or absent ‘−S’). All houses contained windows, and 30 straw bales were provided from day 10 of the rearing cycle. Treatments were applied in one of four houses on a single farm, and were replicated over four production cycles. Behaviour and leg health were observed in weeks 3 to 5 of the rearing cycle. Production performance and environmental parameters were also measured. There was an interaction between perches and age in the percentage of birds observed lying, with higher percentages of birds observed lying in the +P treatment than in the −P treatment during weeks 4 and 5. There was also a significant interaction between string and age in the percentage of birds observed in locomotion, with higher percentages observed in locomotion in the −S treatment than in the +S treatment during weeks 4 and 5. There was also an interaction between string and age in average gait scores, with lower gait scores in the +S treatment than in the −S treatment during weeks 3 and 5 but not within week 4. Daytime observations showed that perches and strings were used frequently, with one bout of perching occurring approximately every 80 s/perch, and one bout of pecking at string occurring every 78 s/string on average. There was a significant effect of age on use of perches (P<0.001) and string (P<0.001), with perching peaking during week 5 and string pecking peaking during week 3. We conclude that commercial broilers in windowed houses with access to straw bales display an interest in additional enrichment stimuli in the form of perches and string, and therefore that these stimuli have the potential to improve welfare. In addition, provision of string as a pecking device appeared to positively influence walking ability. However, this effect was numerically small, was only shown in certain weeks and was not reflected in the other leg health measure (latency to lie). The results also showed an apparent negative effect of string and perches on the activity levels of birds (recorded away from the immediate vicinity of these enrichments) towards the end of the production cycle. These results emphasise the need for further research into optimum design and layout of enrichment stimuli for modern broilers in windowed houses to ensure that their provision leads to clear welfare benefits
Lepton Flavour Violating Leptonic/Semileptonic Decays of Charged Leptons in the Minimal Supersymmetric Standard Model
We consider the leptonic and semileptonic (SL) lepton flavour violating (LFV)
decays of the charged leptons in the minimal supersymmetric standard model
(MSSM). The formalism for evaluation of branching fractions for the SL LFV
charged-lepton decays with one or two pseudoscalar mesons, or one vector meson
in the final state, is given. Previous amplitudes for the SL LFV charged-lepton
decays in MSSM are improved, for instance the -penguin amplitude is
corrected to assure the gauge invariance. The decays are studied not only in
the model-independent formulation of the theory in the frame of MSSM, but also
within the frame of the minimal supersymmetric SO(10) model within which the
parameters of the MSSM are determined. The latter model gives predictions for
the neutrino-Dirac Yukawa coupling matrix, once free parameters in the model
are appropriately fixed to accommodate the recent neutrino oscillation data.
Using this unambiguous neutrino-Dirac Yukawa couplings, we calculate the LFV
leptonic and SL decay processes assuming the minimal supergravity scenario. A
very detailed numerical analysis is done to constrain the MSSM parameters.
Numerical results for SL LFV processes are given, for instance for tau -> e
(mu) pi0, tau -> e (mu) eta, tau -> e (mu) eta', tau -> e (mu) rho0, tau -> e
(mu) phi, tau -> e (mu) omega, etc.Comment: 36 pages, 3 tables, 5 .eps figure
Neutralino-Nucleon Cross Section and Charge and Colour Breaking Constraints
We compute the neutralino-nucleon cross section in several supersymmetric
scenarios, taking into account all kind of constraints. In particular, the
constraints that the absence of dangerous charge and colour breaking minima
imposes on the parameter space are studied in detail. In addition, the most
recent experimental constraints, such as the lower bound on the Higgs mass, the
branching ratio, and the muon are considered. The
astrophysical bounds on the dark matter density are also imposed on the
theoretical computation of the relic neutralino density, assuming thermal
production. This computation is relevant for the theoretical analysis of the
direct detection of dark matter in current experiments. We consider first the
supergravity scenario with universal soft terms and GUT scale. In this scenario
the charge and colour breaking constraints turn out to be quite important, and
\tan\beta\lsim 20 is forbidden. Larger values of can also be
forbidden, depending on the value of the trilinear parameter . Finally, we
study supergravity scenarios with an intermediate scale, and also with
non-universal scalar and gaugino masses where the cross section can be very
large.Comment: Final version to appear in JHE
Known unknowns: building an ethics of uncertainty into genomic medicine
Background Genomic testing has reached the point where, technically at least, it can be cheaper to undertake panel-, exome- or whole genome testing than it is to sequence a single gene. An attribute of these approaches is that information gleaned will often have uncertain significance. In addition to the challenges this presents for pre-test counseling and informed consent, a further consideration emerges over how - ethically - we should conceive of and respond to this uncertainty. To date, the ethical aspects of uncertainty in genomics have remained under-explored. Discussion In this paper, we draft a conceptual and ethical response to the question of how to conceive of and respond to uncertainty in genomic medicine. After introducing the problem, we articulate a concept of ‘genomic uncertainty’. Drawing on this, together with exemplar clinical cases and related empirical literature, we then critique the presumption that uncertainty is always problematic and something to be avoided, or eradicated. We conclude by outlining an ‘ethics of genomic uncertainty’; describing how we might handle uncertainty in genomic medicine. This involves fostering resilience, welfare, autonomy and solidarity. Conclusions Uncertainty will be an inherent aspect of clinical practice in genomics for some time to come. Genomic testing should not be offered with the explicit aim to reduce uncertainty. Rather, uncertainty should be appraised, adapted to and communicated about as part of the process of offering and providing genomic information. Keywords Ethics Uncertainty Genomics Clinical genomics Massively parallel sequencing Genome sequencing Genomic testing Genetic counseling Rare diseases Variants of uncertain significanc
Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares
The extreme ultraviolet portion of the solar spectrum contains a wealth of
diagnostic tools for probing the lower solar atmosphere in response to an
injection of energy, particularly during the impulsive phase of solar flares.
These include temperature and density sensitive line ratios, Doppler shifted
emission lines and nonthermal broadening, abundance measurements, differential
emission measure profiles, and continuum temperatures and energetics, among
others. In this paper I shall review some of the advances made in recent years
using these techniques, focusing primarily on studies that have utilized data
from Hinode/EIS and SDO/EVE, while also providing some historical background
and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the
Topical Issue on Solar and Stellar Flare
- …
