1,378 research outputs found
Dynamical electron transport through a nanoelectromechanical wire in a magnetic field
We investigate dynamical transport properties of interacting electrons moving
in a vibrating nanoelectromechanical wire in a magnetic field. We have built an
exactly solvable model in which electric current and mechanical oscillation are
treated fully quantum mechanically on an equal footing. Quantum mechanically
fluctuating Aharonov-Bohm phases obtained by the electrons cause nontrivial
contribution to mechanical vibration and electrical conduction of the wire. We
demonstrate our theory by calculating the admittance of the wire which are
influenced by the multiple interplay between the mechanical and the electrical
energy scales, magnetic field strength, and the electron-electron interaction
Hamiltonian Formalism of the de-Sitter Invariant Special Relativity
Lagrangian of the Einstein's special relativity with universal parameter
() is invariant under Poincar\'e transformation which preserves
Lorentz metric . The has been extended to be
one which is invariant under de Sitter transformation that preserves so called
Beltrami metric . There are two universal parameters and in
this Special Relativity (denote it as ). The
Lagrangian-Hamiltonian formulism of is formulated in this
paper. The canonic energy, canonic momenta, and 10 Noether charges
corresponding to the space-time's de Sitter symmetry are derived. The canonical
quantization of the mechanics for -free particle is
performed. The physics related to it is discussed.Comment: 24 pages, no figur
Interacting Agegraphic Dark Energy
A new dark energy model, named "agegraphic dark energy", has been proposed
recently, based on the so-called K\'{a}rolyh\'{a}zy uncertainty relation, which
arises from quantum mechanics together with general relativity. In this note,
we extend the original agegraphic dark energy model by including the
interaction between agegraphic dark energy and pressureless (dark) matter. In
the interacting agegraphic dark energy model, there are many interesting
features different from the original agegraphic dark energy model and
holographic dark energy model. The similarity and difference between agegraphic
dark energy and holographic dark energy are also discussed.Comment: 10 pages, 5 figures, revtex4; v2: references added; v3: accepted by
Eur. Phys. J. C; v4: published versio
Anterior Hippocampus and Goal-Directed Spatial Decision Making
Contains fulltext :
115487.pdf (publisher's version ) (Open Access
Recent experimental results in sub- and near-barrier heavy ion fusion reactions
Recent advances obtained in the field of near and sub-barrier heavy-ion
fusion reactions are reviewed. Emphasis is given to the results obtained in the
last decade, and focus will be mainly on the experimental work performed
concerning the influence of transfer channels on fusion cross sections and the
hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier
fusion taught us that cross sections may strongly depend on the low-energy
collective modes of the colliding nuclei, and, possibly, on couplings to
transfer channels. The coupled-channels (CC) model has been quite successful in
the interpretation of the experimental evidences. Fusion barrier distributions
often yield the fingerprint of the relevant coupled channels. Recent results
obtained by using radioactive beams are reported. At deep sub-barrier energies,
the slope of the excitation function in a semi-logarithmic plot keeps
increasing in many cases and standard CC calculations over-predict the cross
sections. This was named a hindrance phenomenon, and its physical origin is
still a matter of debate. Recent theoretical developments suggest that this
effect, at least partially, may be a consequence of the Pauli exclusion
principle. The hindrance may have far-reaching consequences in astrophysics
where fusion of light systems determines stellar evolution during the carbon
and oxygen burning stages, and yields important information for exotic
reactions that take place in the inner crust of accreting neutron stars.Comment: 40 pages, 63 figures, review paper accepted for EPJ
Investigation of the Fundamental Reliability Unit for Cu Dual-Damascene Metallization
An investigation has been carried out to determine the fundamental reliability unit of copper dual-damascene metallization. Electromigration experiments have been carried out on straight via-to-via interconnects in the lower metal (M1) and the upper metal (M2), and in a simple interconnect tree structure consisting of straight via-to-via line with an extra via in the middle of the line (a "dotted-I"). Multiple failure mechanisms have been observed during electromigration testing of via-to-via Cu interconnects. The failure times of the M2 test structures are significantly longer than that of identical M1 structures. It is proposed that this asymmetry is the result of a difference in the location of void formation and growth, which is believed to be related to the ease of electromigration-induced void nucleation and growth at the Cu/Si₃N₄ interface. However, voids were also detected in the vias instead of in the Cu lines for some cases of early failure of the test lines. These early failures are suspected to be related to the integrity and reliability of the Cu via. Different magnitudes and directions of electrical current were applied independently in two segments of the interconnect tree structure. As with Al-based interconnects, the reliability of a segment in this tree strongly depends on the stress conditions of the connected segment. Beyond this, there are important differences in the results obtained under similar test conditions for Al-based and Cu-based interconnect trees. These differences are thought to be associated with variations in the architectural schemes of the two metallizations. The absence of a conducting electromigration-resistant overlayer in Cu technology allows smaller voids to cause failure in Cu compared to Al. Moreover, the Si₃N₄ overlayer that serves as an interlevel diffusion barrier provides sites for easy nucleation of voids and also provides a high diffusivity path for electromigration. The results reported here suggest that while segments are not the fundamental reliability unit for circuit-level reliability assessments for Al or Cu, vias, rather than trees, might be the appropriate fundamental units for the assessment of Cu reliability.Singapore-MIT Alliance (SMA
Underlying Pairing States in Cuprate Superconductors
In this Letter, we develop a microscopic theory to describe the close
proximity between the insulating antiferromagnetic (AF) order and the d-wave
superconducting (dSC) order in cuprates. We show that the cuprate ground states
form a configuration of coherent pairing states consisting of extended singlet
Cooper pairs and triplet pairs, which can simultaneously describe AF and
dSC orders.Comment: 4 papes, 1 figur
Generalized Second Law of Thermodynamics on the Event Horizon for Interacting Dark Energy
Here we are trying to find the conditions for the validity of the generalized
second law of thermodynamics (GSLT) assuming the first law of thermodynamics on
the event horizon in both cases when the FRW universe is filled with
interacting two fluid system- one in the form of cold dark matter and the other
is either holographic dark energy or new age graphic dark energy. Using the
recent observational data we have found that GSLT holds both in quintessence
era as well as in phantom era for new age graphic model while for holographic
dark energy GSLT is valid only in phantom era.Comment: 8 pages, 2 figure
Reconstructing interacting new agegraphic polytropic gas model in non-flat FRW universe
We study the correspondence between the interacting new agegraphic dark
energy and the polytropic gas model of dark energy in the non-flat FRW
universe. This correspondence allows to reconstruct the potential and the
dynamics for the scalar field of the polytropic model, which describe
accelerated expansion of the universe.Comment: 9 page
Interacting new agegraphic viscous dark energy with varying
We consider the new agegraphic model of dark energy with a varying
gravitational constant, , in a non-flat universe. We obtain the equation of
state and the deceleration parameters for both interacting and noninteracting
new agegraphic dark energy. We also present the equation of motion determining
the evolution behavior of the dark energy density with a time variable
gravitational constant. Finally, we generalize our study to the case of viscous
new agegraphic dark energy in the presence of an interaction term between both
dark components.Comment: 12 pages, accepted for publication in IJTP (2010
- …
