81 research outputs found

    Levinson's Theorem for Dirac Particles

    Full text link
    Levinson's theorem for Dirac particles constraints the sum of the phase shifts at threshold by the total number of bound states of the Dirac equation. Recently, a stronger version of Levinson's theorem has been proven in which the value of the positive- and negative-energy phase shifts are separately constrained by the number of bound states of an appropriate set of Schr\"odinger-like equations. In this work we elaborate on these ideas and show that the stronger form of Levinson's theorem relates the individual phase shifts directly to the number of bound states of the Dirac equation having an even or odd number of nodes. We use a mean-field approximation to Walecka's scalar-vector model to illustrate this stronger form of Levinson's theorem. We show that the assignment of bound states to a particular phase shift should be done, not on the basis of the sign of the bound-state energy, but rather, in terms of the nodal structure (even/odd number of nodes) of the bound state.Comment: Latex with Revtex, 7 postscript figures (available from the author), SCRI-06109

    The flavour singlet mesons in QCD

    Get PDF
    We study the flavour singlet mesons from first principles using lattice QCD. We explore the splitting between flavour singlet and non-singlet for vector and axial mesons as well as the more commonly studied cases of the scalar and pseudoscalar mesons.Comment: 12 pages, LATEX, 4 ps figure

    Self-consistent scattering description of transport in normal-superconductor structures

    Full text link
    We present a scattering description of transport in several normal-superconductor structures. We show that the related requirements of self-consistency and current conservation introduce qualitative changes in the transport behavior when the current in the superconductor is not negligible. The energy thresholds for quasiparticle propagation in the superconductor are sensitive to the existence of condensate flow (vs0v_s\neq 0). This dependence is responsible for a rich variety of transport regimes, including a voltage range in which only Andreev transmission is possible at the interfaces, and a state of gapless superconductivity which may survive up to high voltages if temperature is low. The two main effects of current conservation are a shift towards lower voltages of the first peak in the differential conductance and an enhancement of current caused by the greater availability of charge transmitting scattering channels.Comment: 31 pages, 10 PS figures, Latex file, psfig.sty file is added. To appear in Phys. Rev. B (Jan 97

    Direct extraction of QCD LambdaMSbar from moments of structure functions in neutrino-nucleon scattering, using the CORGI approach

    Full text link
    We use recently calculated next-to-next-to-leading (NNLO) anomalous dimension coefficients for the n=1,3,5,...,13 moments of the xF3 structure function in nuN scattering, together with the corresponding three-loop Wilson coefficients, to obtain improved QCD predictions for the moments. The Complete Renormalization Group Improvement (CORGI) approach is used, in which all dependence on renormalization or factorization scales is avoided by a complete resummation of ultraviolet logarithms. The Bernstein Polynomial method is used to compare these QCD predictions to the xF3 data of the CCFR collaboration. Direct fits for LambdaMSbar(5), with Nf=5 effective quark flavours, over the range 20<Q^2<125.9 GeV^2 were performed. We obtain LambdaMSbar(5)=202+54/-45 MeV, corresponding to the three-loop running coupling alphas(MZ)=0.1174+0.0043-0.0043. Including target mass corrections as well we obtain LambdaMSbar(5)=228+35/-36 MeV, corresponding to alphas(MZ)=0.1196+0.0027-0.0031.Comment: 1 figure, 16 pages, corrected values of alphas(MZ

    Direct Extraction of QCD Lambda MS-bar from e+e- Jet Observables

    Full text link
    We directly fit the QCD dimensional transmutation parameter, Lambda MS-bar, to experimental data on e+e- jet observables, making use of next-to-leading order (NLO) perturbative calculations. In this procedure there is no need to mention, let alone to arbitrarily vary, the unphysical renormalisation scale mu, and one avoids the spurious and meaningless ``theoretical error'' associated with standard alpha_s determinations. PETRA, SLD, and LEP data are considered in the analysis. An attempt is made to estimate the importance of uncalculated next-NLO and higher order perturbative corrections, and power corrections, by studying the scatter in the values of Lambda MS-bar obtained for different observables.Comment: 46 pages, 22 figure

    Komar energy and Smarr formula for noncommutative Schwarzschild black hole

    Full text link
    We calculate the Komar energy EE for a noncommutative Schwarzschild black hole. A deformation from the conventional identity E=2STHE=2ST_H is found in the next to leading order computation in the noncommutative parameter θ\theta (i.e. O(θeM2/θ)\mathcal{O}(\sqrt{\theta}e^{-M^2/\theta})) which is also consistent with the fact that the area law now breaks down. This deformation yields a nonvanishing Komar energy at the extremal point TH=0T_{H}=0 of these black holes. We then work out the Smarr formula, clearly elaborating the differences from the standard result M=2STHM=2ST_H, where the mass (MM) of the black hole is identified with the asymptotic limit of the Komar energy. Similar conclusions are also shown to hold for a deSitter--Schwarzschild geometry.Comment: 5 pages Late

    Spatial gradients in the cosmological constant

    Get PDF
    It is possible that there may be differences in the fundamental physical parameters from one side of the observed universe to the other. I show that the cosmological constant is likely to be the most sensitive of the physical parameters to possible spatial variation, because a small variation in any of the other parameters produces a huge variation of the cosmological constant. It therefore provides a very powerful {\em indirect} evidence against spatial gradients or temporal variation in the other fundamental physical parameters, at least 40 orders of magnitude more powerful than direct experimental constraints. Moreover, a gradient may potentially appear in theories where the variability of the cosmological constant is connected to an anthropic selection mechanism, invoked to explain the smallness of this parameter. In the Hubble damping mechanism for anthropic selection, I calculate the possible gradient. While this mechanism demonstrates the existence of this effect, it is too small to be seen experimentally, except possibly if inflation happens around the Planck scale.Comment: 12 page

    Nonlinear Realization of N=2 Superconformal Symmetry and Brane Effective Actions

    Full text link
    Due to the incompatibility of the nonlinear realization of superconformal symmetry and dilatation symmetry with the dilaton as the compensator field, in the present paper it shows an alternative mechanism of spontaneous breaking the N=2 superconformal symmetry to the N=0 case. By using the approach of nonlinear transformations it is found that it leads to a space-filling brane theory with Weyl scale W(1,3) symmetry. The dynamics of the resulting Weyl scale invariant brane, along with that of other Nambu-Goldstone fields, is derived in terms of the building blocks of the vierbein and the covariant derivative from the Maurer-Cartan oneforms. A general coupling of the matter fields localized on the brane world volume to these NG fields is also constructed.Comment: 22 pages, more references and comments are adde

    Numerical Portrait of a Relativistic Thin Film BCS Superfluid

    Get PDF
    We present results of numerical simulations of the 2+1d Nambu - Jona-Lasinio model with a non-zero baryon chemical potential mu including the effects of a diquark source term. Diquark condensates, susceptibilities and masses are measured as functions of source strength j. The results suggest that diquark condensation does not take place in the high density phase mu>mu_c, but rather that the condensate scales non-analytically with j implying a line of critical points and long range phase coherence. Analogies are drawn with the low temperature phase of the 2d XY model. The spectrum of the spin-1/2 sector is also studied yielding the quasiparticle dispersion relation. There is no evidence for a non-zero gap; rather the results are characteristic of a normal Fermi liquid with Fermi velocity less than that of light. We conclude that the high density phase of the model describes a relativistic gapless thin film BCS superfluid.Comment: 37 pages, 16 figure
    corecore