4 research outputs found

    A Method For Eclipsing Component Identification In Large Photometric Datasets

    Full text link
    We describe an automated method for assigning the most likely physical parameters to the components of an eclipsing binary (EB), using only its photometric light curve and combined color. In traditional methods (e.g. WD and EBOP) one attempts to optimize a multi-parameter model over many iterations, so as to minimize the chi-squared value. We suggest an alternative method, where one selects pairs of coeval stars from a set of theoretical stellar models, and compares their simulated light curves and combined colors with the observations. This approach greatly reduces the EB parameter-space over which one needs to search, and allows one to determine the components' masses, radii and absolute magnitudes, without spectroscopic data. We have implemented this method in an automated program using published theoretical isochrones and limb-darkening coefficients. Since it is easy to automate, this method lends itself to systematic analyses of datasets consisting of photometric time series of large numbers of stars, such as those produced by OGLE, MACHO, TrES, HAT, and many others surveys.Comment: 6 pages, 5 figures. To appear in the conference proceedings of "Close Binaries in the 21st Century: New Opportunities and Challenges", Syros, Greece, 27-30 June, 200

    Characterization of Exoplanet-Host Stars

    No full text
    corecore