7 research outputs found

    Immaturities in Reward Processing and Its Influence on Inhibitory Control in Adolescence

    Get PDF
    The nature of immature reward processing and the influence of rewards on basic elements of cognitive control during adolescence are currently not well understood. Here, during functional magnetic resonance imaging, healthy adolescents and adults performed a modified antisaccade task in which trial-by-trial reward contingencies were manipulated. The use of a novel fast, event-related design enabled developmental differences in brain function underlying temporally distinct stages of reward processing and response inhibition to be assessed. Reward trials compared with neutral trials resulted in faster correct inhibitory responses across ages and in fewer inhibitory errors in adolescents. During reward trials, the blood oxygen level–dependent signal was attenuated in the ventral striatum in adolescents during cue assessment, then overactive during response preparation, suggesting limitations during adolescence in reward assessment and heightened reactivity in anticipation of reward compared with adults. Importantly, heightened activity in the frontal cortex along the precentral sulcus was also observed in adolescents during reward-trial response preparation, suggesting reward modulation of oculomotor control regions supporting correct inhibitory responding. Collectively, this work characterizes specific immaturities in adolescent brain systems that support reward processing and describes the influence of reward on inhibitory control. In sum, our findings suggest mechanisms that may underlie adolescents’ vulnerability to poor decision-making and risk-taking behavior

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Kinetic analysis of yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide

    Get PDF
    Background: DNA adenine methylation plays an important role in several critical bacterial processes including mismatchrepair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulenceon DNA adenine methyltransferase (Dam) has led to the proposal that selective Dam inhibitors might function as broadspectrum antibiotics. Methodology/Principal Findings: herein we report the expression and purification of Yersinia pestisDam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that issuitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Daminhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site.When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting inseparation of fluorophore (fluorescein) and quencher (dabcyl) and therefore an increase in fluorescence. The assays weremonitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisationof Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated forhigh throughput screening, giving a Z-factor of 0.7160.07 indicating that it is a sensitive assay for the identification ofinhibitors. Conclusions/Significance: the assay is therefore suitable for high throughput screening for inhibitors of DNAadenine methyltransferases and the kinetic characterisation of the inhibitio
    corecore