1,020 research outputs found

    Stability of Negative Image Equilibria in Spike-Timing Dependent Plasticity

    Full text link
    We investigate the stability of negative image equilibria in mean synaptic weight dynamics governed by spike-timing dependent plasticity (STDP). The neural architecture of the model is based on the electrosensory lateral line lobe (ELL) of mormyrid electric fish, which forms a negative image of the reafferent signal from the fish's own electric discharge to optimize detection of external electric fields. We derive a necessary and sufficient condition for stability, for arbitrary postsynaptic potential functions and arbitrary learning rules. We then apply the general result to several examples of biological interest.Comment: 13 pages, revtex4; uses packages: graphicx, subfigure; 9 figures, 16 subfigure

    Gravitational Mesoscopic Constraints in Cosmological Dark Matter Halos

    Full text link
    We present an analysis of the behaviour of the `coarse-grained' (`mesoscopic') rank partitioning of the mean energy of collections of particles composing virialized dark matter halos in a Lambda-CDM cosmological simulation. We find evidence that rank preservation depends on halo mass, in the sense that more massive halos show more rank preservation than less massive ones. We find that the most massive halos obey Arnold's theorem (on the ordering of the characteristic frequencies of the system) more frequently than less massive halos. This method may be useful to evaluate the coarse-graining level (minimum number of particles per energy cell) necessary to reasonably measure signatures of `mesoscopic' rank orderings in a gravitational system.Comment: LaTeX, 15 pages, 3 figures. Accepted for publication in Celestial Mechanics and Dynamical Astronomy Journa

    Bose-Einstein condensation with magnetic dipole-dipole forces

    Full text link
    Ground-state solutions in a dilute gas interacting via contact and magnetic dipole-dipole forces are investigated. To the best of our knowledge, it is the first example of studies of the Bose-Einstein condensation in a system with realistic long-range interactions. We find that for the magnetic moment of e.g. chromium and a typical value of the scattering length all solutions are stable and only differ in size from condensates without long-range interactions. By lowering the value of the scattering length we find a region of unstable solutions. In the neighborhood of this region the ground state wavefunctions show internal structures not seen before in condensates. Finally, we find an analytic estimate for the characteristic length appearing in these solutions.Comment: final version, 4 pages, 4 figure

    Mindfulness-Based Interventions in Recurrent Ovarian Cancer: A Mixed-Methods Feasibility Study.

    Get PDF
    A recurrence of cancer is a traumatic and stressful experience, and a number of approaches have been proposed to manage or treat the associated psychological distress. Meditative techniques such as mindfulness may be able to improve an individual's ability to cope with stressful life events such as cancer diagnosis or treatment. This single-arm mixed-methods study primarily aimed to determine the feasibility of using a mindfulness-based intervention in managing psychosocial distress in recurrent ovarian cancer. Twenty-eight participants took part in a mindfulness-based program, involving six group sessions, each lasting 1.5 hours and delivered at weekly intervals. The study found that the mindfulness-based intervention was acceptable to women with recurrent ovarian cancer and feasible to deliver within a standard cancer care pathway in a UK hospital setting. The results suggested a positive impact on symptoms of depression and anxiety, but further study is needed to explore the effectiveness of the intervention

    Continuous loading of a magnetic trap

    Get PDF
    We have realized a scheme for continuous loading of a magnetic trap (MT). ^{52}Cr atoms are continuously captured and cooled in a magneto-optical trap (MOT). Optical pumping to a metastable state decouples atoms from the cooling light. Due to their high magnetic moment (6 Bohr magnetons), low-field seeking metastable atoms are trapped in the magnetic quadrupole field provided by the MOT. Limited by inelastic collisions between atoms in the MOT and in the MT, we load 10^8 metastable atoms at a rate of 10^8 atoms/s below 100 microkelvin into the MT. After loading we can perform optical repumping to realize a MT of ground state chromium atoms.Comment: 4 pages, 4 figures, version 2, modified references, included additional detailed information, minor changes in figure 3 and in tex

    Dynamic generation of maximally entangled photon multiplets by adiabatic passage

    Get PDF
    The adiabatic passage scheme for quantum state synthesis, in which atomic Zeeman coherences are mapped to photon states in an optical cavity, is extended to the general case of two degenerate cavity modes with orthogonal polarization. Analytical calculations of the dressed-state structure and Monte Carlo wave-function simulations of the system dynamics show that, for a suitably chosen cavity detuning, it is possible to generate states of photon multiplets that are maximally entangled in polarization. These states display nonclassical correlations of the type described by Greenberger, Horne, and Zeilinger (GHZ). An experimental scheme to realize a GHZ measurement using coincidence detection of the photons escaping from the cavity is proposed. The correlations are found to originate in the dynamics of the adiabatic passage and persist even if cavity decay and GHZ state synthesis compete on the same time scale. Beyond entangled field states, it is also possible to generate entanglement between photons and the atom by using a different atomic transition and initial Zeeman state.Comment: 22 pages (RevTeX), including 23 postscript figures. To be published in Physical Review

    The Point of Origin of the Radio Radiation from the Unresolved Cores of Radio-Loud Quasars

    Full text link
    Locating the exact point of origin of the core radiation in active galactic nuclei (AGN) would represent important progress in our understanding of physical processes in the central engine of these objects. However, due to our inability to resolve the region containing both the central compact object and the jet base, this has so far been difficult. Here, using an analysis in which the lack of resolution does not play a significant role, we demonstrate that it may be impossible even in most radio loud sources for more than a small percentage of the core radiation at radio wavelengths to come from the jet base. We find for 3C279 that 85\sim85 percent of the core flux at 15 GHz must come from a separate, reasonably stable, region that is not part of the jet base, and that then likely radiates at least quasi-isotropically and is centered on the black hole. The long-term stability of this component also suggests that it may originate in a region that extends over many Schwarzschild radii.Comment: 7 pages with 3 figures, accepted for publication in Astrophysics and Space Scienc

    Doppler-free frequency modulation spectroscopy of atomic erbium in a hollow cathode discharge cell

    Full text link
    The erbium atomic system is a promising candidate for an atomic Bose-Einstein condensate of atoms with a non-vanishing orbital angular momentum (L0L \neq 0) of the electronic ground state. In this paper we report on the frequency stabilization of a blue external cavity diode laser system on the 400.91 nmnm laser cooling transition of atomic erbium. Doppler-free saturation spectroscopy is applied within a hollow cathode discharge tube to the corresponding electronic transition of several of the erbium isotopes. Using the technique of frequency modulation spectroscopy, a zero-crossing error signal is produced to lock the diode laser frequency on the atomic erbium resonance. The latter is taken as a reference laser to which a second main laser system, used for laser cooling of atomic erbium, is frequency stabilized

    H-Ras oncogene counteracts the growth-inhibitory effect of genistein in T24 bladder carcinoma cells

    Get PDF
    Among eight human bladder cancer cell lines we examined, only T24 cells were resistant to the growth inhibition effect of genistein, an isoflavone and potent anticancer drug. Since the T24 cell line was the only cell line known to overexpress oncogenic H-Ras(val12), we investigated the role of H-Ras(val 12) in mediating drug resistance. Herein, we demonstrate that the phenotype of T24 cells could be dramatically reversed and became relatively susceptible to growth inhibition by genistein if the synthesis of H- Ras(val 12) or its downstream effector c-Fos had been suppressed. The inhibition of Ras-mediated signalling with protein kinase inhibitors, such as PD58059 and U0126 which inhibited MEK and ERK, in T24 cells also rendered the identical phenotypic reversion. However, this reversion was not observed when an inhibitor was used to suppress the protein phosphorylation function of PI3 K or PKC. These results suggest that the signal mediated by H-Ras(val 12) is predominantly responsible for the resistance of the cells to the anticancer drug genistein
    corecore