12 research outputs found

    Quantum trajectory approach to stochastically-induced quantum interference effects in coherently-driven two-level atoms

    Get PDF
    Stochastic perturbation of two-level atoms strongly driven by a coherent light field is analyzed by the quantum trajectory method. A new method is developed for calculating the resonance fluorescence spectra from numerical simulations. It is shown that in the case of dominant incoherent perturbation, the stochastic noise can unexpectedly create phase correlation between the neighboring atomic dressed states. This phase correlation is responsible for quantum interference between the related transitions resulting in anomalous modifications of the resonance fluorescence spectra.Comment: paper accepted for publicatio

    A high-precision rf trap with minimized micromotion for an In+ multiple-ion clock

    Full text link
    We present an experiment to characterize our new linear ion trap designed for the operation of a many-ion optical clock using 115-In^+ as clock ions. For the characterization of the trap as well as the sympathetic cooling of the clock ions we use 172-Yb^+. The trap design has been derived from finite element method (FEM) calculations and a first prototype based on glass-reinforced thermoset laminates was built. This paper details on the trap manufacturing process and micromotion measurement. Excess micromotion is measured using photon-correlation spectroscopy with a resolution of 1.1nm in motional amplitude, and residual axial rf fields in this trap are compared to FEM calculations. With this method, we demonstrate a sensitivity to systematic clock shifts due to excess micromotion of |({\Delta}{\nu}/{\nu})| = 8.5x10^-20. Based on the measurement of axial rf fields of our trap, we estimate a number of twelve ions that can be stored per trapping segment and used as an optical frequency standard with a fractional inaccuracy of \leq 1x10^-18 due to micromotion.Comment: 19 pages with 14 picture

    Quantum Computing with Trapped Ion Hyperfine Qubits

    Full text link
    We discuss the basic aspects of quantum information processing with trapped ions, including the principles of ion trapping, preparation and detection of hyperfine qubits, single-qubit operations and multi-qubit entanglement protocols. Recent experimental advances and future research directions are outlined.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45527/1/11128_2004_Article_489417.pd

    Thermal requirements of the lactating sow.

    No full text
    corecore