17 research outputs found
Infrared conductivity of a one-dimensional charge-ordered state: quantum lattice effects
The optical properties of the charge-ordering () phase of the
one-dimensional (1D) half-filled spinless Holstein model are derived at zero
temperature within a well-known variational approach improved including
second-order lattice fluctuations. Within the phase, the static lattice
distortions give rise to the optical interband gap, that broadens as the
strength of the electron-phonon () interaction increases. The lattice
fluctuation effects induce a long subgap tail in the infrared conductivity and
a wide band above the gap energy. The first term is due to the multi-phonon
emission by the charge carriers, the second to the interband transitions
accompanied by the multi-phonon scattering. The results show a good agreement
with experimental spectra.Comment: 5 figure
Modelling of strain effects in manganite films
Thickness dependence and strain effects in films of
perovskites are analyzed in the colossal magnetoresistance regime. The
calculations are based on a generalization of a variational approach previously
proposed for the study of manganite bulk. It is found that a reduction in the
thickness of the film causes a decrease of critical temperature and
magnetization, and an increase of resistivity at low temperatures. The strain
is introduced through the modifications of in-plane and out-of-plane electron
hopping amplitudes due to substrate-induced distortions of the film unit cell.
The strain effects on the transition temperature and transport properties are
in good agreement with experimental data only if the dependence of the hopping
matrix elements on the bond angle is properly taken into account.
Finally variations of the electron-phonon coupling linked to the presence of
strain turn out important in influencing the balance of coexisting phases in
the filmComment: 7 figures. To be published on Physical Review
Conductance oscillations of a spin-orbit stripe with polarized contacts
We investigate the linear conductance of a stripe of spin-orbit interaction
in a 2D electron gas; that is, a 2D region of length along the transport
direction and infinite in the transverse one in which a spin-orbit interaction
of Rashba type is present. Polarization in the contacts is described by means
of Zeeman fields. Our model predicts two types of conductance oscillations:
Ramsauer oscillations in the minority spin transmission, when both spins can
propagate, and Fano oscillations when only one spin propagates. The latter are
due to the spin-orbit coupling with quasibound states of the non propagating
spin. In the case of polarized contacts in antiparallel configuration Fano-like
oscillations of the conductance are still made possible by the spin orbit
coupling, even though no spin component is bound by the contacts. To describe
these behaviors we propose a simplified model based on an ansatz wave function.
In general, we find that the contribution for vanishing transverse momentum
dominates and defines the conductance oscillations. Regarding the oscillations
with Rashba coupling intensity, our model confirms the spin transistor
behavior, but only for high degrees of polarization. Including a position
dependent effective mass yields additional oscillations due to the mass jumps
at the interfaces.Comment: 8.5 pages, 9 figure
On the effects of the magnetic field and the isotopic substitution upon the infrared absorption of manganites
Employing a variational approach that takes into account electron-phonon and
magnetic interactions in perovskites with , the
effects of the magnetic field and the oxygen isotope substitution on the phase
diagram, the electron-phonon correlation function and the infrared absorption
at are studied. The lattice displacements show a strong correlation
with the conductivity and the magnetic properties of the system. Then the
conductivity spectra are characterized by a marked sensitivity to the external
parameters near the phase boundary.Comment: 10 figure
Crossover from large to small bipolarons
A variational procedure is developed to study the properties of the bipolaron in the Fröhlich model including explicitly the electron band structure and taking into account the long-range repulsive electron-electron interaction. Adopting two different ansatze for the longitudinal optical phonon distribution function, the large-bipolaron and small-bipolaron limits are obtained. The evolution of the bipolaron ground state as a function of the electron-phonon coupling constant and of the bare-electronic bandwidth is discussed and the bipolaron phase diagram is presented. A clear crossover from the large-bipolaron to the small-bipolaron regime takes place
Bond Stretching Phonon Softening of Underdoped Copper-OxideSuperconductors
The anomalous properties of the bond stretching
(BS) phonon mode are analyzed in the underdoped region
of cuprates by studying the t -t
-J -Holstein model and the
Hubbard–Holstein model with both numerical and analytical
approaches. It is shown that a BS phonon softening occurs
at an intermediate wavevector along the horizontal direction
of the Brillouin zone (BZ) in agreement with recent
INXS experiments as the result of the interaction among
strongly correlated holes and antiferromagnetic fluctuations.
An explanation of the single vs. double mode scenario is
also discusse