33,323 research outputs found
Pulsar slow glitches in a solid quark star model
A series of five unusual slow glitches of the radio pulsar B1822-09 (PSR
J1825-0935) were observed over the 1995-2005 interval. This phenomenon is
understood in a solid quark star model, where the reasonable parameters for
slow glitches are presented in the paper. It is proposed that, because of
increasing shear stress as a pulsar spins down, a slow glitch may occur,
beginning with a collapse of a superficial layer of the quark star. This layer
of material turns equivalently to viscous fluid at first, the viscosity of
which helps deplete the energy released from both the accumulated elastic
energy and the gravitation potential. This performs then a process of slow
glitch. Numerical calculations show that the observed slow glitches could be
reproduced if the effective coefficient of viscosity is ~10^2 cm^{2}/s and the
initial velocity of the superficial layer is order of 10^{-10} cm/s in the
coordinate rotating frame of the star.Comment: 5 pages, 5 figures, accepted for publication in MNRAS (Main Journal
3D quantum Hall effect of Fermi arcs in topological semimetals
The quantum Hall effect is usually observed in 2D systems. We show that the
Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological
semimetals. Because of the topological constraint, the Fermi arc at a single
surface has an open Fermi surface, which cannot host the quantum Hall effect.
Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at
opposite surfaces can form a complete Fermi loop and support the quantum Hall
effect. The edge states of the Fermi arcs show a unique 3D distribution, giving
an example of (d-2)-dimensional boundary states. This is distinctly different
from the surface-state quantum Hall effect from a single surface of topological
insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall
conductivity evolves from the 1/B dependence to quantized plateaus at the Weyl
nodes. This behavior can be realized by tuning gate voltages in a slab of
topological semimetal, such as the TaAs family, CdAs, or NaBi. This
work will be instructive not only for searching transport signatures of the
Fermi arcs but also for exploring novel electron gases in other topological
phases of matter.Comment: 5 pages, 3 figure
An extended finite element method with smooth nodal stress
The enrichment formulation of double-interpolation finite element method
(DFEM) is developed in this paper. DFEM is first proposed by Zheng \emph{et al}
(2011) and it requires two stages of interpolation to construct the trial
function. The first stage of interpolation is the same as the standard finite
element interpolation. Then the interpolation is reproduced by an additional
procedure using the nodal values and nodal gradients which are derived from the
first stage as interpolants. The re-constructed trial functions are now able to
produce continuous nodal gradients, smooth nodal stress without post-processing
and higher order basis without increasing the total degrees of freedom. Several
benchmark numerical examples are performed to investigate accuracy and
efficiency of DFEM and enriched DFEM. When compared with standard FEM,
super-convergence rate and better accuracy are obtained by DFEM. For the
numerical simulation of crack propagation, better accuracy is obtained in the
evaluation of displacement norm, energy norm and the stress intensity factor
In-medium Properties of as a KN structure in Relativistic Mean Field Theory
The properties of nuclear matter are discussed with the relativistic
mean-field theory (RMF).Then, we use two models in studying the in-medium
properties of : one is the point-like in the usual RMF and
the other is a KN structure for the pentaquark. It is found that the
in-medium properties of are dramatically modified by its internal
structure. The effective mass of in medium is, at normal nuclear
density, about 1030 MeV in the point-like model, while it is about 1120 MeV in
the model of KN pentaquark. The nuclear potential depth of in
the KN model is approximately -37.5 MeV, much shallower than -90 MeV in
the usual point-like RMF model.Comment: 8 pages, 5 figure
- …