28 research outputs found

    Multi-trait mimicry of ants by a parasitoid wasp

    Get PDF
    Many animals avoid attack from predators through toxicity or the emission of repellent chemicals. Defensive mimicry has evolved in many species to deceive shared predators, for instance through colouration and other morphological adaptations, but mimicry hardly ever seems to involve multi-trait similarities. Here we report on a wingless parasitoid wasp that exhibits a full spectrum of traits mimicing ants and affording protection against ground-dwelling predators (wolf spiders). In body size, morphology and movement Gelis agilis (Ichneumonidae) is highly similar to the black garden ant (Lasius niger) that shares the same habitat. When threatened, G. agilis also emits a volatile chemical that is similar to an ant-produced chemical that repels spiders. In bioassays with L. niger, G. agilis, G. areator, Cotesia glomerata and Drosophila melanogaster, ants and G. agilis were virtually immune to spider attack, in contrast the other species were not. Volatile characterisation with gas chromatography-mass spectrometry identified G. agilis emissions as 6-methyl-5-hepten-2-one, a known insect defence semiochemical that acts as an alarm pheromone in ants. We argue that multi-trait mimicry, as observed in G. agilis, might be much more common among animals than currently realized

    Data from: Plastic collective endothermy in a complex animal society (army ant bivouacs: Eciton burchellii parvispinum)

    No full text
    Endothermic animals do not always have a single adaptive internal temperature; some species exhibit plastic homeostasis, adaptively allowing body temperature to drop when thermoregulatory costs are high. Like large-bodied endotherms, some animal societies exhibit collective thermal homeostasis. We tested for plasticity of thermoregulation in the self-assembled temporary nests (bivouacs) of army ants. We measured core bivouac temperatures under a range of environmental conditions and at different colony developmental (larval vs. pupal brood) stages. Contrary to previous assertions, bivouacs were not perfect thermoregulators in all developmental stages. Instead, bivouacs functioned as superorganismal facultative endotherms, using a combination of site choice and context-dependent metabolic heating to adjust core temperatures across an elevational cline in ambient temperature. When ambient temperature was low, the magnitude of metabolic heating was dependent on colony developmental stage: pupal bivouacs were warmer than larval bivouacs. At cooler high elevations, bivouacs functioned like some endothermic animals that intermittently lower their body temperatures to conserve energy. Bivouacs potentially conserved energy by investing less metabolic heating in larval brood because the high costs of impaired worker development may require more stringent thermoregulation of pupae. Our data also suggest that site choice played an important role in bivouac cooling under high ambient temperatures at low elevations. Climate warming may expand upper elevational range limits of Eciton burchellii parvispinum (Forel), while reducing the availability of cool and moist bivouac sites at lower elevations, potentially leading to future low-elevation range contraction

    Data from: Species-level predation network uncovers high prey specificity in a Neotropical army ant community

    Get PDF
    Army ants are among the top arthropod predators and considered keystone species in tropical ecosystems. During daily mass raids with many thousand workers, army ants hunt live prey, likely exerting strong top-down control on prey species. Many tropical sites exhibit a high army ant species diversity (>20 species), suggesting that sympatric species partition the available prey niches. However, whether and to what extent this is achieved has not been intensively studied yet. We therefore conducted a large-scale diet survey of a community of surface-raiding army ants at La Selva Biological Station in Costa Rica. We systematically collected 3,262 prey items from eleven army ant species (genera Eciton, Nomamyrmex and Neivamyrmex). Prey items were classified as ant prey or non-ant prey. The prey nearly exclusively consisted of other ants (98%), and most booty was ant brood (87%). Using morphological characters and DNA barcoding, we identified a total of 1,105 ant prey specimens to the species level. 129 ant species were detected among the army ant prey, representing about 30% of the known local ant diversity. Using weighted bipartite network analyses, we show that prey specialization in army ants is unexpectedly high, and prey niche overlap very small. Besides food niche differentiation, we uncovered a spatio-temporal niche differentiation in army ant raid activity. We discuss competition-driven multidimensional niche differentiation and predator-prey arms races as possible mechanisms underlying prey specialization in army ants. By combining systematic prey sampling with species-level prey identification and network analyses, our integrative approach can guide future research by portraying how predator-prey interactions in complex communities can be reliably studied, even in cases where morphological prey identification is infeasible
    corecore