1,099 research outputs found
Complexity of 2D random laser modes at the transition from weak scattering to Anderson localization
The spatial extension and complexity of the eigenfunctions of an open
finite-size two-dimensional (2D) random system are systematically studied for a
random collection of systems ranging from weakly scattering to localized. The
eigenfunctions are obtained by introducing gain in the medium and pumping just
above threshold. All lasing modes are found to correspond to quasimodes of the
passive system, for all regimes of propagation. We demonstrate the existence of
multipeaked quasimodes or necklace states in 2D at the transition from
localized to diffusive, resulting from the coupling of localized states.Comment: Submitted to PR
Unsteady Ekman--Stokes dynamics: implications for surface-wave induced drift of floating marine litter
We examine Stokes drift and waveâinduced transport of floating marine litter on the surface of a rotating ocean with a turbulent mixed layer. Due to CoriolisâStokes forcing and surface wave stress, a secondâorder Eulerianâmean flow forms, which must be added to the Stokes drift to obtain the correct waveâinduced Lagrangian velocity. We show that this waveâdriven Eulerianâmean flow can be expressed as a convolution between the unsteady Stokes drift and an âEkmanâStokes kernel.â Using this convolution, we calculate the unsteady waveâdriven contribution to particle transport. We report significant differences in both direction and magnitude of transport when the Eulerianâmean EkmanâStokes velocity is included
Strategy for the identification of micro-organisms producing food and feed products : bacteria producing food enzymes as study case
Recent European regulations require safety assessments of food enzymes (FE) before their commercialization. FE are mainly produced by micro-organisms, whose viable strains nor associated DNA can be present in the final products. Currently, no strategy targeting such impurities exists in enforcement laboratories. Therefore, a generic strategy of first line screening was developed to detect and identify, through PCR amplification and sequencing of the 16S-rRNA gene, the potential presence of FE producing bacteria in FE preparations. First, the specificity was verified using all microbial species reported to produce FE. Second, an in-house database, with 16S reference sequences from bacteria producing FE, was constructed for their fast identification through blast analysis. Third, the sensitivity was assessed on a spiked FE preparation. Finally, the applicability was verified using commercial FE preparations. Using straightforward PCR amplifications, Sanger sequencing and blast analysis, the proposed strategy was demonstrated to be convenient for implementation in enforcement laboratories
Diffusion of inertia-gravity waves by geostrophic turbulence
The scattering of inertia-gravity waves by large-scale geostrophic turbulence
in a rapidly rotating, strongly stratified fluid leads to the diffusion of wave
energy on the constant-frequency cone in wavenumber space. We derive the
corresponding diffusion equation and relate its diffusivity to the wave
characteristics and the energy spectrum of the turbulent flow. We check the
predictions of this equation against numerical simulations of the
three-dimensional Boussinesq equations in initial-value and forced scenarios
with horizontally isotropic wave and flow fields. In the forced case,
wavenumber diffusion results in a wave energy spectrum consistent with
as-yet-unexplained features of observed atmospheric and oceanic spectra
Rank-Ordering Statistics of Extreme Events: Application to the Distribution of Large Earthquakes
Rank-ordering statistics provides a perspective on the rare, largest elements
of a population, whereas the statistics of cumulative distributions are
dominated by the more numerous small events. The exponent of a power law
distribution can be determined with good accuracy by rank-ordering statistics
from the observation of only a few tens of the largest events. Using analytical
results and synthetic tests, we quantify the systematic and the random errors.
We also study the case of a distribution defined by two branches, each having
a power law distribution, one defined for the largest events and the other for
smaller events, with application to the World-Wide (Harvard) and Southern
California earthquake catalogs. In the case of the Harvard moment catalog, we
make more precise earlier claims of the existence of a transition of the
earthquake magnitude distribution between small and large earthquakes; the
-values are for large shallow earthquakes and for smaller shallow earthquakes. However, the cross-over
magnitude between the two distributions is ill-defined. The data available at
present do not provide a strong constraint on the cross-over which has a
probability of being between magnitudes and for shallow
earthquakes; this interval may be too conservatively estimated. Thus, any
influence of a universal geometry of rupture on the distribution of earthquakes
world-wide is ill-defined at best. We caution that there is no direct evidence
to confirm the hypothesis that the large-moment branch is indeed a power law.
In fact, a gamma distribution fits the entire suite of earthquake moments from
the smallest to the largest satisfactorily. There is no evidence that the
earthquakes of the Southern California catalog have a distribution with tw
Lagrangian transport by deep-water surface gravity wavepackets: effects of directional spreading and stratification
The Lagrangian mass transport by non-dissipating surface gravity wavepackets consists of the Stokes drift and the wave-induced return flow. We examine how directional spreading and density stratification affect this mass transport for an isolated non-dissipating wavepacket in deep water using a perturbation expansion. For an unstratified ocean, we show that the net displacement by the return flow is finite, negative, the same at all vertical levels and inversely proportional to the depth for spanwise-infinite packets representing unidirectional (two-dimensional) seas, but zero for spanwise-localised packets representing directionally spread seas (three-dimensional). We resolve this difference by demonstrating that a transition between two-dimensional-like (finite) and three-dimensional-like (zero) displacement occurs on a time scale inversely proportional to the degree of directional spreading. For a stratified ocean, we show that in two dimensions the net displacement profile by the return flow oscillates slowly with depth, with a wavelength dependent on the ratio of buoyancy frequency to the surface wave group velocity, and infinite displacements are predicted when the surface wavepacket resonantly excites internal waves. In three dimensions, the net displacement remains zero in the presence of stratification, but finite-time displacements may be appreciably altered
What next for preimplantation genetic screening? High mitotic chromosome instability rate provides the biological basis for the low success rate
Preimplantation genetic screening is being scrutinized, as recent randomized clinical trials failed to observe the expected significant increase in live birth rates following fluorescence in situ hybridization (FISH)-based screening. Although these randomized clinical trials are criticized on their design, skills or premature stop, it is generally believed that well-designed and well-executed randomized clinical trials would resolve the debate about the potential benefit of preimplantation genetic screening. Since FISH can analyze only a limited number of chromosomal loci, some of the embryos transferred might be diagnosed as ânormalâ but in fact be aneuploid for one or more chromosomes not tested. Hence, genome-wide array comparative genome hybridization screening enabling aneuploidy detection of all chromosomes was thought to be a first step toward a better design. We recently showed array screening indeed enables accurate determination of the copy number state of all chromosomes in a single cell. Surprisingly, however, this genome-wide array screening revealed a much higher frequency and complexity of chromosomal aberrations in early embryos than anticipated, with imbalances in a staggering 90% of all embryos. The mitotic error rate in cleavage stage embryos was proven to be higher than the meiotic aneuploidy rate and as a consequence, the genome of a single blastomere is not representative for the genome of the other cells of the embryo. Hence, potentially viable embryos will be discarded upon screening a single blastomere. This observation provides a biological basis for the failure of the randomized clinical trials to increase baby-take-home rates using FISH on cleavage stage embroys
- âŠ